
Dendroid: A Text Mining Approach to Analyzing and
Classifying Code Structures in Android Malware

Families

Guillermo Suarez-Tangila,∗, Juan E. Tapiadora, Pedro Peris-Lopeza,
Jorge Blasco Alisa

aComputer Security (COSEC) Lab
Department of Computer Science, Universidad Carlos III de Madrid

28911 Leganes, Madrid, Spain.

Abstract

The rapid proliferation of smartphones over the last few years has come hand in
hand with and impressive growth in the number and sophistication of malicious
apps targetting smartphone users. The availability of reuse-oriented develop-
ment methodologies and automated malware production tools makes exceed-
ingly easy to produce new specimens. As a result, market operators and mal-
ware analysts are increasingly overwhelmed by the amount of newly discovered
samples that must be analyzed. This situation has stimulated research in intel-
ligent instruments to automate parts of the malware analysis process. In this
paper, we introduce Dendroid, a system based on text mining and informa-
tion retrieval techniques for this task. Our approach is motivated by a statistical
analysis of the code structures found in a dataset of Android OS malware fam-
ilies, which reveals some parallelisms with classical problems in those domains.
We then adapt the standard Vector Space Model and reformulate the modelling
process followed in text mining applications. This enables us to measure similar-
ity between malware samples, which is then used to automatically classify them
into families. We also investigate the application of hierarchical clustering over
the feature vectors obtained for each malware family. The resulting dendograms
resemble the so-called phylogenetic trees for biological species, allowing us to
conjecture about evolutionary relationships among families. Our experimental
results suggest that the approach is remarkably accurate and deals efficiently
with large databases of malware instances.

Keywords: Malware analysis, software similarity and classification, text
mining, information retrieval, smartphones, Android OS

∗Corresponding author
Email addresses: guillermo.suarez.tangil@uc3m.es (Guillermo Suarez-Tangil),

jestevez@inf.uc3m.es (Juan E. Tapiador), pperis@inf.uc3m.es (Pedro Peris-Lopez),
jbalis@inf.uc3m.es (Jorge Blasco Alis)

Preprint submitted to Expert Systems with Applications July 19, 2013

1. Introduction

The past few years have witnessed a rapid proliferation of smartphones as
popular portable devices with increasingly powerful computing, networking and
sensing capabilities. In their current generation, most existing smartphones are
far more powerful than early personal computers (PCs). But perhaps the key
feature of these devices is that they offer the possibility to easily incorporate
third-party applications (“apps”, for short) through online markets. The pop-
ularity of smartphones has been repeatedly corroborated by recent commercial
surveys, showing that they will very soon outsell the number of PCs worldwide
[1]. For example, the number of smartphone users has swiftly increased over
the past few years. In 2011, global mobile handset shipments reached 1.6 billion
units [2], and the total smartphone sales reached 472 million units (58% percent
of all mobile devices sales in 2010) [3]. According to a report by Nielsen [4], the
number of Android OS and iOS users alone increased from 38 to 84 million
between 2011 and 2012. Specifically, the global mobile operating system market
share shows that Android OS reached 69.7% at the end of 2012, racing past
other platforms such as Symbian, BlackberryOS and iOS. The same report also
indicates that the average number of apps per device increased from 32 to 41,
and the proportion of time spent by users on smartphone applications almost
equals the time spent on the Web (73% vs. 81%). Furthermore, the number
of worldwide smartphone sales saw a record of 207.7 million units during 2012,
rising up 38.3% with respect to the same period in the previous year [5].

In many respects, smartphones present greater security and privacy issues to
users than traditional PCs [6]. For instance, many of such devices incorporate
numerous sensors that could leak highly sensitive information about users loca-
tion, gestures, moves and other physical activities, as well as recording audio,
pictures and video from their surroundings. Furthermore, users are increasingly
embedding authentication credentials into their devices, as well as making use
of on-platform micropayment technologies such as NFC [7].

One major source of security and privacy problems for smartphone users is
precisely the ability to incorporate third-party applications from available online
markets. Many market operators carry out a revision process over submitted
apps, which presumably also involves some form of security testing to detect
if the app includes malicious code. So far such revisions have proven clearly
insufficient for several reasons. First, market operators do no give details about
how (security) revisions are done. However, the ceaseless presence of malware
in official markets reveals that operators cannot afford to perform an exhaustive
analysis over each submitted app. Second, determining which applications are
malicious and which are not is still a formidable challenge. This is further
complicated by a recent rise in the so-called grayware [8], namely apps that are
not fully malicious but that entail security and/or privacy risks of which the
user is not aware. And finally, a significant fraction of users rely on alternative
markets to get access for free to apps that cost money in official markets. Such
unofficial and/or illegal markets have repeatedly proven to be fertile ground
for malware, particularly in the form of popular apps modified (repackaged) to

2

include malicious code.

1.1. Motivation

The reality is that the rapid development of smartphone technologies and
its widespread user acceptance have come hand in hand with a similar increase
in the number and sophistication of malicious software targeting popular plat-
forms. Malware developed for early mobile devices (e.g., Palm platforms) and
featured mobile phones was identified prior to 2004. The proliferation of mo-
bile devices in the subsequent years translated into an exponential growth in
the presence of malware specifically developed for them (mostly Symbian), with
more than 400 cases between 2004 and 2007 [9, 10]. Later on that year, iOS and
Android OS were released and shortly became the predominant platforms.
This gave rise to an alarming escalation in the number and sophistication of
malicious software targetting these platforms, particularly Android OS. For
example, according to the mobile threat report published by Juniper Networks
in 2012, the number of unique malware variants for Android OS increased by
3325.5% during 2011 [2]. A similar report by F-Secure reveals that the number
of malicious Android OS applications received during the first quarter of 2012
increased from 139 to 3063 when compared to the first quarter of 2011 [11],
and by the end of 2012 it already represents 97% of the total mobile malware
according to McAfee [12].

The main factors driving the development of malware have swiftly changed
from research, amusement and the search for notoriety to purely economical
–and political, to a lesser extent. Current malware industry already generates
substantial revenues [13], and emergent paradigms such as Malware-as-a-Service
(MAAS) paint a gloomy forecast for the years to come. In the case of smart-
phones, malware is a profitable industry due to (i) the existence of a high number
of potential targets and/or high value targets; and (ii) the availability of reuse-
oriented development methodologies for malware that make exceedingly easy
to produce new specimens. Both points are true for the case of Android OS
and explain, together with the open nature of this platform and some technical
particularities, why it has become such an attractive target to attackers.

Malware analysis is a thriving research area with a substantial amount of
still unsolved problems (see, e.g., [14] for an excellent survey). In the case of
smartphones, the impressive growth both in malware and benign apps is making
increasingly unaffordable any human-driven analysis of potentially dangerous
apps. This state of affairs have consolidated the need for intelligent analysis
techniques to aid malware analysts in their daily functions. For instance, when
confronted with a continuously growing stream of incoming malware samples,
it would be extremely helpful to differentitate between those that are minor
variants of a known specimen and those that correspond to novel, previously
unseen samples. Grouping samples into families, establishing the relationships
among them, and studying the evolution of the various known “species” is also
a much sought after application.

3

1.2. Overview and Contributions

Problems similar to those discussed above have been successfuly attacked
with Artificial Intelligence and Data Mining techniques in many application
domains. In this paper, we explore the use of text mining approaches to auto-
matically analyze smartphone malware samples and families based on the code
structures present in their software components. Such code structures are rep-
resentations of the Control Flow Graph (CFG) of each method found in the app
classes [15, 16]. A high level overview of Dendroid’s main building blocks and
salient applications is provided in Fig. 1. During the modeling phase, all differ-
ent code structures are extracted from a dataset of provided malware samples.
A vector space model is then used to associate a unique feature vector with
each malware sample and family. This vector representation is then used two
illustrate two main applications:

• Automatic classification of unknown malware samples into candidate fam-
ilies based on the similarity of their respective code structures. Our clas-
sification scheme involves a preparatory stage where the sample is trans-
formed into a query in the text mining sense. Thus, a slight variation of
this process can be used to search for a set of given code structures in a
database of known specimens, a task that could be remarkably useful for
malware analysts and app market operators.

• We show how it is possible to perform an evolutionary analysis of mal-
ware families based on the dendograms obtained after hierarchical clus-
tering. The process is almost equivalent to the analysis of the so-called
phylogenetic trees for biological species [17], although using software code
structures rather than physical and/or genetic features. This enables us
to conjecture about evolutionary relationships among the various malware
families, including the identification of common ancestors and studying the
diversification process that they may have gone through as a consequence
of code reuse and malware re-engineering techniques.

Dendroid is novel in two separate ways. On the one hand, to the best
of our knowledge using code structures to characterize Android OS malware
families has not been explored before. One major advantage of focussing on
the internal structure of code units (methods) rather than on their specific
sequence of instructions is an improved resistance against obfuscation (i.e., de-
liberate modifications of the code aimed at evading pattern-based recognition
[18]). Furthermore, such structures prove to be particularly useful for the case
of smartphone malware, where rapid development methodologies heavily based
on code reuse are prevalent. On the other hand, the idea of using text mining
techniques to automate tasks such as classifying specimens, searching for code
components, or studying evolutionary relationships of malware families is, to
our knowledge, novel too. Besides, text mining techniques were developed to
efficiently deal with massive amounts of data, a feature which turns out to be
very convenient for the problems that we address here.

4

Extrac'on	 of	
Code	 Structures	

Extrac'on	 of	
Code	 Structures	

Malware	 Samples	 (Apps)	

F1	

F2	

F3	

Unknown	
Malware	 Sample	

1-‐NN	
Classifier	

Family	 Fj	

Hierarchical	
Clustering	 &	

Linkage	 Analysis	

Modeling	 &	
Feature	
Extrac'on	

Family	
Feature	
Vectors	

vF1	 =	 (w1,1,	 …,	 wk,1)	
vF2	 =	 (w1,2,	 …,	 wk,2)	
vF3	 =	 (w1,3,	 …,	 wk,3)	

…
	

[c1,	 c2,	 …,	 cn]	

[ci,	 cj,	 …,	 cm]	

CLASSIFICATION	

MODELING	

ANALYSIS	

Feature	
Extrac'on	

[Cx,	 Cy,	 …,	 Cz]	

F1	 :	 [c1,1,	 …,	 cq,1]	
F2	 :	 [c1,2,	 …,	 cr,2]	
F3	 :	 [c1,3,	 …,	 cs,3]	

Family	
Code	
Structures	

App	 Code	 Structures	

App	 Code	 Structures	

Figure 1: Overview of Dendroid’s architecture.

The remaining of this paper is organized as follows. In Section 2 we describe
the dataset of Android malware families used in this paper, together with the
tools and methodology followed to extract code structures from each app. In
Section 3 we analyze and discuss various statistical features of the code struc-
tures found in the malware instances. Based on our findings from this analysis,
in Section 4 we propose Dendroid, a text mining approach to classify and an-
alyze malware families according to the code structures present in their apps.
We first introduce a suitable vector space model and report experimental results
related to classifying instances into families, measuring similarity among fam-
ilies, and using dendrograms to analyze the evolutionary relationships among
families. In Section 5 we provide an overview of related work in this area. Fi-
nally, Section 6 concludes the paper and discusses our main contributions and
future research directions.

2. Dataset and Experimental Setting

The work presented in this paper is largely based on a sizeable dataset of
real-world Android OS malware samples. The dataset, known as the Android
Malware Genome Project1 was collected, characterized and discussed by Zhou
and Jian in [19], and covers the majority of malware families for Android OS
up to late 2011. It consists of 1247 malicious apps grouped into 49 different
families that include a variety of infection techniques (repackaging, update at-

1Available at http://www.malgenomeproject.org

5

tacks, and drive-by-download) and payload functionalities (privilege escalation,
remote control, financial charge, and private information exfiltration). For the
purposes of this paper, we discarded 16 out of the 49 families as they only con-
tain one specimen each, resulting in a final dataset of 1231 malware samples
grouped into 33 families. More details on this will be later provided in Section
3.

2.1. Extracting Code Structures

One key aspect of our work is the decomposition of an app into a number of
constituent code elements referred to as code chunks. Each code chunk corre-
sponds to a method associated with a class within the app. Thus, an app will be
fragmented into as many code chunks as methods contained in it. Rather than
focusing on the specific sequence of instructions contained in a code chunk, we
extract a high-level representation of the associated Control Flow Graph (CFG).
CFGs use graphs as a representation of the paths that a program might tra-
verse during its execution. Each node in a CFG represents a “basic block”, i.e.,
a piece of code that will be sequentially executed without any jumps. The CFG
of a piece of code is explicit in the source code, is relatively easy to extract, and
has been extensively used in static analysis techniques [20].

Each malware instance contained in the dataset described above has been
first disassembled into Dalvik instructions. We then used Androguard [21] to
extract the code chunks of all malicious apps and compute their structure. An-
droguard is an open source tool that implements a number of static analysis
functions over Android OS apps. CFGs provided by Androguard are based
on a grammar proposed by Cesare and Xiang [15] and shown in Fig. 2. The
sequence of instructions contained in a code chunk is thus replaced by a list of
statements defining its control flow, such as a block of consecutive instructions
(B), and bifurcation determined by an “if” condition (I), an unconditional go-to
jump (G), and so on. After parsing each code chunk with this grammar, the re-
sulting structure is a sequence of symbols of varying length such as those shown
in Fig. 2.

After this process, each malware sample a is represented by a sequence:

a = 〈c1, c2, . . . , c|a|〉 (1)

where ci is a string describing the code structure of the i-th method in a, and |a|
is the total number of methods contained in a. In the remaining of this paper,
we will refer to ci’s indistinctly as code chunks or code structures. The resulting
dataset of code chunks, grouped by app and family as in the original Android
Malware Genome Project, has been made publicly available2.

2http://www.seg.inf.uc3m.es/~guillermo-suarez-tangil/dendroid/codechunks.zip

6

Grammar:

Procedure ::= StatementList

StatementList ::= Statement | Statement StatementList

Statement ::= BasicBlock | Return | Goto | If | Field | Package | String

Return ::= ’R’

Goto ::= ’G’

If ::= ’I’

BasicBlock ::= ’B’

Field ::= ’F’0 | ’F’1

Package ::= ’P’ PackageNew | ’P’ PackageCall

PackageNew ::= ’0’

PackageCall ::= ’1’

PackageName ::= Epsilon | Id

String ::= ’S’ Number | ’S’ Id

Number ::= \d+
Id ::= [a-zA-Z]\w+

Examples:

CC1 B[P0P1]B[I]B[P1R]B[P1P1I]B[P0SP1P1P1]B[P1G]|B[F1P1R]

CC2 B[SSF1F0P1SF0SP1P1I]B[SP1P1F1SP1F1F0I]B[F0P1I]B[F0SP1]B[]

B[P1SP1SP1F1SF0P1I]B[F0I]B[F0P1I]B[F1F0P1P1I]B[F0P1I]B[]B[F0P1]

B[F0I]B[S]B[P1I]B[F0P1]B[I]B[P1F0P1P1F0P1I]B[F0P1P1I]B[F0P1I]

B[]B[F0P1F0P1]B[P0F0P1P1SP1F0P1SP1F0P1SP1F0P1P1F0P1F0P1S]

CC3 B[P1SF1R]

Figure 2: CFG grammar used by Androguard to extract code structures.

3. Analysis of Code Structures in Android Malware Families

In this section, we analyze and discuss various statistical features of the
code structures found in the malware apps and families of the dataset described
above. Our findings will subsequently motivate the use of text-mining techniques
for tasks such as, for example, the classification of new apps into candidate
malware families or the analysis of similarities among families.

3.1. Definitions

We are interested in exploring questions such as how large, in terms of num-
ber of code chunks (CCs), apps are; what the distribution of CCs across apps
and families is; or how discriminant a subset of CCs is for a given family. We
next introduce a number of measures that will be later used to perform this
analysis.

Definition 1 (CC). We denote by CC(a) the set of all different CCs found in
app a. We emphasize that CC(a) is a set and, therefore, it does not contain
repeated elements.

7

Definition 2 (Redundancy). The redundancy, R(a), of an app a is given by:

R(a) = 1− |CC(a)|
|a|

(2)

where |a| is the total number of CCs (possibly with repetitions) in a.

Note that redundancy measures the fraction of repeated CCs present in an
app, with low values indicating that CCs do not generally appear multiple times
in the app, and vice versa.

Definition 3 (FCC). The set of family CCs for a family Fi is given by:

FCC(Fi) =
⋃

a∈Fi

CC(a) (3)

Definition 4 (CCC). The set of common CCs for a family Fi is given by:

CCC(Fi) =
⋂

a∈Fi

CC(a) (4)

In short, the set CCC(Fi) contains those CCs found in all apps of Fi. Even
though this can be certainly seen as a distinctive feature of family Fi, it does
not imply that all those CCs are unique to Fi. For instance, code reuse –which
is a recurrent feature of malware in general and, particularly, of smarphone
malware– will make the same CCs appear in multiple families.

Definition 5 (FDCC). Given a set of malware families M = {F1, . . . ,Fm}, a
set C = {c1, . . . , cn} of CCs is fully discriminant for Fi with respect to M iff:

(i) C ⊆ CCC(Fi), and

(ii) ∀Fk ∈M,Fk 6= Fi : C ∩ FCC(Fk) = ∅

We denote by FDCC(Fi|M) the maximal set of fully discriminant CCs for Fi

with respect to M; that is, C = FDCC(Fi|M) iff C is fully discriminant for Fi

with respect to M, and for all C ′ such that C ′ is fully discriminant for Fi with
respect to M, C ′ ⊆ C.

Put simply, a set of CCs is fully discriminant for a family Fi if and only
if every CC in the set appears in every app of Fi and, furthermore, no CC
in the set appear in any app of any other family. Consequently, such a set
unequivocally identifies the family, provided that it is not the empty set.

3.2. Results and Discussion

We computed the various measures and sets described above over all the
apps and families in our dataset. Table 1 and Figure 3 summarize the most
relevant results.

The entire dataset contains 84854 different CCs. In terms of number of
unique CCs, apps do not display a uniform behavior, neither within the same

8

App stats Family stats
Family Fi |Fi| Avg{|CC(a)|} Avg{R(a)} |FCC(Fi)| |CCC(Fi)| |FDCC(Fi|M)|

ADRD 22 416 0.59 2726 21 8
AnserverBot 187 367 0.64 17635 44 9
Asroot 8 78 0.57 462 1 0
BaseBridge 122 433 0.53 9918 5 0
BeanBot 8 746 0.68 3081 61 34
Bgserv 9 384 0.53 487 67 34
CruseWin 2 82 0.53 82 82 40
DroidDream 16 302 0.51 2545 10 0
DroidDreamLight 46 529 0.54 3339 40 13
DroidKungFu1 34 501 0.58 7609 10 0
DroidKungFu2 30 295 0.51 2418 9 0
DroidKungFu3 309 872 0.58 19092 48 11
DroidKungFu4 96 936 0.56 9239 19 2
DroidKungFuSapp 3 351 0.66 411 310 0
FakePlayer 6 6 0.73 7 10 2
GPSSMSSpy 6 13 0.44 23 9 3
Geinimi 69 430 0.58 12141 77 37
GingerMaster 4 223 0.64 297 159 108
GoldDream 47 513 0.54 9129 13 3
Gone60 9 35 0.41 56 26 5
HippoSMS 4 148 0.67 262 8 1
KMin 52 502 0.50 795 120 42
NickySpy 2 65 0.71 84 47 34
Pjapps 45 1160 0.58 15128 6 0
Plankton 11 133 0.52 876 14 2
RogueLemon 2 962 0.54 1441 483 321
RogueSPPush 9 365 0.60 633 114 60
SndApps 10 28 0.55 54 20 11
Tapsnake 2 33 0.57 55 12 2
YZHC 22 316 0.48 1704 33 11
Zsone 12 365 0.40 535 338 1
jSMSHider 16 113 0.46 266 64 52
zHash 11 1348 0.56 2344 645 390

Table 1: Statistical indicators obtained for all apps and families in the dataset.

family nor across families. Apps in some malware families have, on average,
only a few different CCs: see for example FakePlayer (6), GPSSMSSpy (13), or
SndApps (28). In contrast, others are quite large, such as for example zHash

(1348), Pjapps (1160), or DroidKungFu4 (936).
The variance, both of apps’ length and redundancy within each family, is

generally large, as illustrated by the boxplots shown in Figures 3(a) and 3(b).
This can be explained by a number of factors, including the fact that in many
cases malware belonging to the same family appears in very different apps, each
one with its own set and distribution of CCs. In general, however, all apps
display a redundancy between 0.4 and 0.7 regardless of their size.

The sizes of the FCC, CCC, and FDCC sets for each family reveal some re-
markable details. The number of family CCs (FCC) varies quite significantly
across families. Furthermore, such variability seems uncorrelated with the aver-

9

−500

0

500

1000

1500

2000

2500

3000

A
D

R
D

A
n

s
e

rv
e

rB
o

t

A
s
ro

o
t

B
a

s
e

B
ri
d

g
e

B
e

a
n

B
o

t

B
g

s
e

rv

C
ru

s
e

W
in

D
ro

id
D

re
a

m

D
ro

id
D

re
a

m
L

ig
h

t

D
ro

id
K

u
n

g
F

u
1

D
ro

id
K

u
n

g
F

u
2

D
ro

id
K

u
n

g
F

u
3

D
ro

id
K

u
n

g
F

u
4

D
ro

id
K

u
n

g
F

u
S

a
p

p

F
a

k
e

P
la

y
e

r

G
P

S
S

M
S

S
p

y

G
e

in
im

i

G
in

g
e

rM
a

s
te

r

G
o

ld
D

re
a

m

G
o

n
e

6
0

H
ip

p
o

S
M

S

K
M

in

N
ic

k
y
S

p
y

P
ja

p
p

s

P
la

n
k
to

n

R
o

g
u

e
L

e
m

o
n

R
o

g
u

e
S

P
P

u
s
h

S
n

d
A

p
p

s

T
a

p
s
n

a
k
e

Y
Z

H
C

Z
s
o

n
e

jS
M

S
H

id
e

r

z
H

a
s
h

C
C

(a
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
D

R
D

A
n

s
e

rv
e

rB
o

t

A
s
ro

o
t

B
a

s
e

B
ri
d

g
e

B
e

a
n

B
o

t

B
g

s
e

rv

C
ru

s
e

W
in

D
ro

id
D

re
a

m

D
ro

id
D

re
a

m
L

ig
h

t

D
ro

id
K

u
n

g
F

u
1

D
ro

id
K

u
n

g
F

u
2

D
ro

id
K

u
n

g
F

u
3

D
ro

id
K

u
n

g
F

u
4

D
ro

id
K

u
n

g
F

u
S

a
p

p

F
a

k
e

P
la

y
e

r

G
P

S
S

M
S

S
p

y

G
e

in
im

i

G
in

g
e

rM
a

s
te

r

G
o

ld
D

re
a

m

G
o

n
e

6
0

H
ip

p
o

S
M

S

K
M

in

N
ic

k
y
S

p
y

P
ja

p
p

s

P
la

n
k
to

n

R
o

g
u

e
L

e
m

o
n

R
o

g
u

e
S

P
P

u
s
h

S
n

d
A

p
p

s

T
a

p
s
n

a
k
e

Y
Z

H
C

Z
s
o

n
e

jS
M

S
H

id
e

r

z
H

a
s
h

R
e

d
u

n
d

a
n

c
y

(a) (b)

(c)

Figure 3: Distribution of (a) unique CCs (CC); (b) redundancy (R); and (c)
common and fully discriminant CCs for each family (CCC/FDCC).

age number of CCs in the apps. The most likely explanation for this has to do
with the proliferation and prevalence of each malware family. Families such as
AnserverBot, Geinimi, Pjapps, and DroidKungFu appeared in a variety of very
popular repackaged apps and infected a significant number of devices. Thus,
finding the same malware in very different apps induces a sharp increase in the
size of FCC.

The CCC set removes this diversity and identifies code structures common

10

to all available apps within a family. The size of this set varies across families,
being quite low in families where the malware code has undergone significant
evolution, possibly after being included in different apps. For example, only
6 CCs appear in each of the 45 samples of Pjapps. On the contrary, apps in
unpopular or rare families share essentially the same version of the malware:
see for example zHash, where all its 11 apps share 645 CCs.

Finally, the rightmost column in Table 1 shows the number of fully discrim-
inant CCs for each family. Surprisingly, The FDCC set is non-empty for 26 out
of the 33 families. This suggest that, in principle, those CCs might be used as
a “signature” to perfectly classify an app into one of those families. We believe,
however, that such a scheme would be extremely weak for a number of reasons.
One of the most important shortcomings of using FDCC as the basis to represent
malware family features is that it is very fragile: the addition of a new app to
a family such that it does not share any CCs with those already in the family
automatically makes the CCC set empty, which in turn makes FDCC empty too.
Such an app might have actually been incorrectly labeled as belonging to the
family, or perhaps carefully constructed to avoid sharing CCs with all other
apps. In either case, the characterization of the family would not be useful
anymore.

We next study the distribution of CCs across families, which will motivate
a more robust representation of family features.

3.3. Distribution of Code Structures

Fig. 4 shows the distribution of CCs as a function of the number of families
where they appear. This plot is obtained by iterating over all different code
structures and computing, for each one of them, the number of different families
where they appear. (A CC appear in a family if it appears in at least one app
of that family.) The results reveal that 78.9% of all code structures appear in
just one family. Note that this does not mean that such a family is the same,
as different code structures may appear in different families. Rather, this value
indicates that if a code structure is found in one family, it is unlikely to find
that same code structure in an app belonging to a different family. Similarly,
the number of code structures that appear in 2, 3, 4, and 5 different families
drops to 12.6%, 3.5%, 1.5% and 1.1%, respectively. Consequently, less than 1%
of all available code structures appear in 6 or more different families.

This distribution of code structures across malware families suggests that
each family can be sufficiently well characterized by just a few code structures,
possibly accompanied by some extra information such as the frequency of that
code structure in each app of the family, the fraction of apps where it appears,
etc. We next elaborate on this.

4. Dendroid: Mining Code Chunks in Malware Families

Based on the findings discussed in the previous section, we next describe
Dendroid, our approach to analyzing malware samples and families based on

11

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
10

−3

10
−2

10
−1

10
0

10
1

10
2

P
e

rc
e

n
ta

g
e

 o
f

C
C

s

Number of Families

78.9%

12.6%

3.5%

1.5%

1.1%

Figure 4: Distribution of CCs as a function of the number of families where
they appear.

mining code structures. We first present the vector space model used and de-
scribe the main features of our prototype implementation. Subsequently we
present two main applications –classifying unknown malware apps and analyz-
ing possible evolutinary paths of malware families– and discuss the experimental
results obtained.

4.1. Vector Space Model

In this section, we adapt to our problem various numerical indicators well
researched in the field of information retrieval and text mining. One central con-
cept in those fields is the so-called Vector Space Model (VSM) [22], sometimes
known as Term Vector Model, where each object dj of a corpus is represented
as a vector of identifiers

dj = (w1,j , . . . , wk,j) (5)

Each identifier wi,j is a measure of the relevance that the i-th term, ti, has in
object dj . In the most common setting, objects and terms are documents and
words, respectively. Thus, wi,j is an indicator of the importance of word ti in
document dj .

12

Many interesting problems related to information retrieval and text mining
can be easily reformulated in the VSM in terms of vector operations. For ex-
ample, the cosine of the angle between two vectors is a good measure of the
similarity between the associated documents. Such vector operations are the
basis for a number of interesting primitives, such as comparing two documents
or ranking various documents according to their similarity to a given query
(after appropriately representing queries as vectors too).

One popular statistical indicator used in the VSM is the term frequency-
inverse document frequency (tf-idf). Using the notation introduced above, the
tf-idf wi,j of term ti in dj is the product of two statistics: (1) the term frequency
(tf), which measures the number of times ti appears in dj ; and (2) the inverse
document frequency (idf), which measures whether ti is common or rare across
all documents in the corpus. Thus, a high tf-idf value means not only that the
corresponding term appears quite often in a document, but also that it is not
frequent in other documents. As a result, one important effect is that the tf-idf
tends to filter out terms that are common across documents.

Our proposal essentially mimics the model discussed above. Each family
Fj is represented by a vector vj = (I1,j , . . . , Ik,j), where Ii,j = I(ci,Fj ,M) is
computed as

I(ci,Fj ,M) = ccf(ci,Fj) · iff(ci,M) (6)

The indicators ccf(c,Fj) and iff(c,M) are approximately equivalent to the tf
and idf statistics, respectively, and can be computed as follows.

Definition 6 (CCF). The frequency of a CC c in a family Fj is given by

ccf(c,Fj) =

∑
a∈Fj

freq(c, a)

max{freq(c, a) : a ∈ Fj}
(7)

where freq(c, a) is the number of occurrences of CC c in app a.

Definition 7 (IFF). The inverse family frequency of a CC c with respect to a
set of malware families M = {F1, . . . ,Fm} is given by

iff(c,M) = log
|M|

1 + |{Fi ∈M : c ∈ FCC(Fj)}|
(8)

4.2. An example

We next illustrate the model presented above with a numerical example and
discuss some relevant features. Assume two different datasets, M1 and M2, of
malicious apps, with |M1| = 4 and |M2| = 400. Given a CC ci, we can easily
see how each family feature vector varies according to the relevance of ci.

On the one hand, when ci is a rather common CC (see Fig. 5a), i.e., it
appears in most families, the iff value quickly vanishes (see Fig. 5b). Similarly,
it can also be observed how the components of a family vector grow when the
frequency of a CC increases, as shown in 5a. On the other hand, when ci is a
very uncommon CC, the iff value grows significantly: see, e.g., Fig. 5 where

13

F1 F2 F3 F4

Apps a1 a2 a3 a4 a5 a6 a7
Is ci in ak? X × X X × × ×
ccf(ci,Fj) 2/3 1/2 0 1
iff(ci,M1) log 4

1+2 = 0.288

I(ci,Fj ,M1) 0.192 0.144 0.000 0.288

(a) Rather common CC with |M1| = 4.

-6 -4 -2 2 4 6

1

2

3

Hx from -6 to 6L

(b) iff(ci,M1)

F1 F2 · · · F400

Apps a1 a2 a3 a4 a5 · · · an
Is ci in ak? X × × X × × X
ccf(ci,Fj) 1/3 1/2 0 1
iff(ci,M2) log 400

1+3 = 4.605

I(ci,Fj ,M2) 1.535 2.302 0.000 4.605

(c) Very uncommon CC with |M2| = 400

-6 -4 -2 0 2 4 6

4

5

6

7

Hx from -6 to 6L

(d) iff(ci,M2)

Figure 5: Computation of I(ci,Fj ,M) and distribution of the iff value de-
pending on the popularity of the CC in two different malware datasets: tiny (a)
and (b), and large (c) and (d).

iff(ci,M2) is 16 times larger than iff(ci,M1). The overall result is that the
relevance of a CC is strongly influenced by its frequency across families. Thus,
CCs that are common to many families have a low influence in the family feature
vector, even if they are very frequent.

4.3. Implementation

We have built a Java implementation of the VSM discussed above and ap-
plied it over all families in our dataset to obtain a family feature vector for
each of them. The process is described by the algorithm shown in Fig. 6 and
outputs one vector vj for each malware family Fj , with each vector component
representing the relevance of a CC in Fj .

The algorithm comprises three main steps: (i) initialization, (ii) inverse
family frequency computation, and (iii) CC frequency computation. First, we
extract the frequency freq(c, a) for every CC c ∈ CC(a) of each app a ∈ M
(lines 2–5). The inverse family frequency is then computed for each extracted
CC using Eq. (8) (lines 8–10). Finally, the frequency of each CC is computed
by applying Eq. (8), and the associated indicator for the CC is obtained (lines
11–16).

4.4. Modelling Families and Classifying Malware Instances

In our first experiment, we have tested the ability to correctly predict the
family of a malware instance. To do this, we have split our dataset in two sub-
sets of approximately equal number of malware instances and the same family

14

Algorithm 1. Computing Family Vectors

Input:
Dataset of labelled malware apps (sequences of code chunks):

M = {(a1,Fa1
), (a2,Fa2

), . . . , ((ap,Fam
))}

where Fai
∈ {F1, . . . ,Fq}

Output:
Vectors vj = (I1,j , . . . , Ik,j) for each Fj ∈ {F1, . . . ,Fq}

Algorithm:
1 FCC(Fj) = ∅ ∀j = 1, . . . , q
2 For each (a,Fa) ∈M do
3 FCC(Fa) = FCC(Fa) ∪ CC(a)
4 Update freq(c, a) for each c ∈ CC(a)
5 end-for
6 C(M) =

⋃q
j=1 FCC(Fj)

7 k = |C(M)|
8 For each i = 1, . . . , k do
9 Compute iff(ci,M) according to (8)

10 end-for
11 For each Fj do
12 For each i = 1, . . . , k do
13 Compute ccf(ci,Fj) according to (7)
14 vj[i] = Ii,j = ccf(ci,Fj) · iff(ci,M)
15 end-for
16 end-for
17 return {v1, . . . ,vq}

Figure 6: Algorithm for obtaining each family vector.

distribution. This has been simply carried out by randomly picking from each
family half of the malware instances (or the closest integer number when the
family had an odd number of members). The process resulted in two datasets
with 621 and 610 malware instances, respectively.

The first dataset (621 instances) was used to derive a vectorial representation
for each malware family as described in Section 4.1. A total number of 84854 CC
were found across all instances in the dataset, so each family is represented by a
vector with this dimensionality, as specified in (6). We note, however, that such
vectors are very sparse (as expected by the analysis given in Section 3), which
in practice makes very efficient to store and manipulate them. For illustration
purposes, the largest family vectors correspond to DroidKungFu3 (19091 non-
null components), AnserverBot (17634), Pjapps (15127), and Geinimi (12140).
On average, only around 11% of each feature vector contains discriminant in-
formation.

The second dataset (610 instances) was processed in a similar way, obtaining
a vectorial representation for each malware instance. We then implemented a

15

Algorithm 2. 1-NN malware classifier

Input:
Family vectors {v1, . . . ,vq} and data structures 〈C(M), iff(ci,M)〉
Malware instance a

Output:
Predicted family Fj

Algorithm:
1 for each ci ∈ C(M) do
3 u[i]) = freq(ci, a) · iff(ci,M)
4 end-for
5 j = arg mini{dist(u,vi)}
6 return Fj

Figure 7: 1-NN malware classification algorithm.

1-NN (nearest neighbor) classifier [23] to compute the predicted family for each
malware instance under test. Such a prediction is the family whose vector is
closest to the instance’s vector (see Fig. 7). 1-NN is a widely used method in
data mining that only requires to compute n distances and one minimum. To
compute distances between vectors, we relied on the well-known cosine similar-
ity:

Definition 8 (Cosine similarity). The cosine similarity between two vectors
u = (u1, . . . , uk) and v = (v1, . . . , vk) is given by

sim(u,v) = cos(θu,v) =
u · v

‖ u ‖‖ v ‖
=

k∑
i=1

uivi√√√√ k∑
i=1

u2i

√√√√ k∑
i=1

v2i

(9)

The cosine similarity, which measures the cosine of the angle between vectors
u and v, has been extensively used to compare documents in text mining and
information retrieval applications. Besides, it is quite efficient to evaluate in
domains such as ours, since vectors are sparse and, therefore, only a few non-
zero dimensions need to be considered in the computation. As for our purposes
a distance, and not a similarity, is required, we use:

dist(u,v) = 1− sim(u,v) (10)

The overall classification error per family attained in this experiment is
shown in Table 2. In overall terms, 35 out of the 610 malware instances are
misclassified, resulting in a global classification error around 5.74%. A closest
inspection reveals that the classification error is not uniform across families.
On the contrary, errors concentrate on 6 out of the 33 malware families studied

16

Classification Error: Incorrectly classified / total instances (%)

ADRD 0/11 (00.00%) GingerMaster 0/2 (00.00%)
AnserverBot 4/93 (04.30%) GoldDream 0/23 (00.00%)
Asroot 0/4 (00.00%) Gone60 0/4 (00.00%)
BaseBridge 5/61 (08.20%) HippoSMS 0/2 (00.00%)
BeanBot 0/4 (00.00%) KMin 0/26 (00.00%)
Bgserv 0/4 (00.00%) NickySpy 0/1 (00.00%)
CruseWin 0/1 (00.00%) Pjapps 0/22 (00.00%)
DroidDream 0/8 (00.00%) Plankton 0/5 (00.00%)
DroidDreamLight 0/23 (00.00%) RogueLemon 0/1 (00.00%)
DroidKungFu1 2/17 (11.76%) RogueSPPush 0/4 (00.00%)
DroidKungFu2 3/15 (20.00%) SndApps 0/5 (00.00%)
DroidKungFu3 13/154 (08.44%) Tapsnake 0/1 (00.00%)
DroidKungFu4 8/48 (16.67%) YZHC 0/11 (00.00%)
DroidKungFuSapp 0/1 (00.00%) Zsone 0/6 (00.00%)
FakePlayer 0/3 (00.00%) jSMSHider 0/8 (00.00%)
GPSSMSSpy 0/3 (00.00%) zHash 0/5 (00.00%)
Geinimi 0/34 (00.00%) Global 35/610 (5.74%)

Table 2: Malware classification error per family using 1-NN.

(AnserverBot, BaseBridge, and DroidKungFu1 through DroidKungFu4), while
instances belonging to the remaining 27 families are perfectly classified.

Interestingly, DroidKungFu has been considered a milestone in Android OS
malware sophistication [19]. After the release of its first version, a number of
variants rapidly emerged, including DroidKungFu2 through DroidKungFu4 or
DroidKungFuApp. A common feature shared by all these variants is the use
of encryption to hide their existence. In fact, some of them embedded their
payloads within constant strings or even resource files (e.g., pictures, asset files,
etc.). Furthermore, DroidKungFu aggressively obfuscates the class name and
uses native programs (Java Native Interface, or JNI) precisely to difficult the
analysis. Similarly, AnserverBot use sophisticated techniques to obfuscate all
internal classes, methods, and fields. Moreover, instead of enclosing the payload
within the app, AnserverBot dynamically fetches and loads it at runtime (this
is known as update attacks). In this regard, some authors (e.g., [19]) believe
that AnserverBot actually evolved from BaseBridge and inherited this feature
from it. Our results seem to confirm this hypothesis.

More insights can be gained by observing the confusion matrix given in Ta-
ble 3. Each cell (x, y) in the matrix shows the number of instances belonging to
family x whose predicted family is y. Here, for instance, we can observe that 5
out of the 61 samples of BaseBridge have been predicted as AnserverBot. Sim-
ilarly, we can observe that a few samples of DroidKungFu1 have been classified
as DroidKungFu2 and, in a similar way, there is some missclassifications between
DroidKungFu3 and DroidKungFu4. Thus, the aforementioned classification error

17


`````````̀Actual
Predicted

A
D
R
D

A
n
se
rv
er
B
o
t

A
sr
o
o
t

B
a
se
B
ri
d
g
e

B
ea

n
B
o
t

B
g
se
rv

C
ru

se
W

in
D
ro
id
D
re
a
m

D
ro
id
D
re
a
m
L
ig
h
t

D
ro
id
K
u
n
g
F
u
1

D
ro
id
K
u
n
g
F
u
2

D
ro
id
K
u
n
g
F
u
3

D
ro
id
K
u
n
g
F
u
4

D
ro
id
K
u
n
g
F
u
S
a
p
p

F
a
k
eP

la
y
er

G
P
S
S
M
S
S
p
y

G
ei
n
im

i

G
in
g
er
M
a
st
er

G
o
ld
D
re
a
m

G
o
n
e6

0
H
ip
p
o
S
M
S

K
M
in

N
ic
k
y
S
p
y

P
ja
p
p
s

P
la
n
k
to
n

R
o
g
u
eL

em
o
n

R
o
g
u
eS

P
P
u
sh

S
n
d
A
p
p
s

T
a
p
sn

a
k
e

Y
Z
H
C

Z
so
n
e

jS
M
S
H
id
er

zH
a
sh

ADRD 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11
AnserverBot 0 89 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93

Asroot 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
BaseBridge 0 5 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61

BeanBot 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4
Bgserv 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

CruseWin 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
DroidDream 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8

DroidDreamLight 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23
DroidKungFu1 0 0 0 0 0 0 0 0 0 15 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17
DroidKungFu2 0 0 0 0 0 0 0 0 0 3 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
DroidKungFu3 0 0 0 0 0 0 0 0 0 0 0 141 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154
DroidKungFu4 0 0 0 0 0 0 0 0 0 0 0 8 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 48

DroidKungFuSapp 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
FakePlayer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3

GPSSMSSpy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
Geinimi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 34

GingerMaster 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
GoldDream 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23

Gone60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 4
HippoSMS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2

KMin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 0 0 0 0 26
NickySpy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1

Pjapps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 0 0 0 0 0 0 0 0 0 22
Plankton 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5

RogueLemon 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
RogueSPPush 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 4

SndApps 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 5
Tapsnake 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

YZHC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 11
Zsone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 6

jSMSHider 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 8
zHash 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 5

11 94 4 60 4 4 1 8 23 18 14 149 53 1 3 3 34 2 23 4 2 26 1 22 5 1 4 5 1 11 6 8 5 610

Table 3: Confusion matrix for malicious app classification.

is actually justified by the evolutionary relationships of these particular malware
strands.

4.5. Evolutionary Analysis of Malware Families

In this section, we discuss the application of hierarchical clustering to the
feature vectors that model samples and family. The resulting dendrograms are
then used to conjecture about their evolutionary phylogenesis, giving a valuable
instrument to discover relationships among families. We first describe the hi-
erarchical clustering algorithm currently included in Dendroid. Subsequently
we discuss the results obtained with our dataset.

4.5.1. Single Linkage Hierarchical Clustering

Single Linkage Clustering, also known as nearest neighbour clustering, is a
well-known method to carry out an agglomerative hierarchical clustering process
over a population of vectors. The algorithm, shown in Fig. 8, keeps a set of

18



Algorithm 3. Single-linkage hierarchical clustering of malware families

Input:
Family vectors {v1, . . . ,vq}

Output:
Proximity matrices D(t) = [dij ] and linkages at each level L(k)

Algorithm:
1 K = {v1, . . . ,vq}
2 D(0) = [dij ] = dist(vi,vj) for all vi,vj ∈ K
3 m = 0, L(m) = 0
4 while |K| 6= 1 do
5 Find r, s ∈ K such that dist(r, s) = min

a,b∈K
{dist(a,b)}

6 Merge r, s into new cluster vrs

7 m = m+ 1
8 L(m) = dist(r, s)
9 D(m) = D(m−1) deleting the rows and columns corresponding to r and s

10 Add to D a new row and column for vrs

11 D[vrs,x] = dist(vrs,x) = min{dist(r,x),dist(s,x)} for all x
12 K = K ∪ {vrs} \ {r, s}
13 end-while
14 return 〈D(0), . . . , D(m), L〉

Figure 8: Single linkage hierarchical clustering algorithm for malware families.

clusters, K, which is initialized to the set of family vectors. At each iteration
m, the two closest clusters r, s ∈ K are combined into a larger cluster vrs. The
distance matrix between each pair of clusters is then updated by removing both
r and s, adding the newly created vrs, and finally computing the distances
from vrs to each remaining cluster x through a linkage function. In our case,
such a function is simply the shortest between the distance from x to r and the
distance x to s. Furthermore, the algorithm keeps a list L(m) with the distances
at which each fusion takes place. The process is iterated until the set of clusters
K is reduced to one element.

4.5.2. Results and Discussion

The results of a hierarchical clustering can be visualized in a dendrogram as
the one depicted in Fig. 10 for the dataset used in this work. The dendrogram
represents a tree diagram where links between the leaves (malware families) il-
lustrate the parental relationships (ancestors and descendants) in a hierarchy.
Thus, clusters (denoted as vrs in Fig. 8–line 6) are tree nodes representing
merged families, i.e., a common ancestor. The paths that group together differ-
ent families illustrate the phylogenetic evolution of the “species.” Furthermore,
the distance D(t) between an ancestor and its descendants is a measure of their
similarity and, therefore, can be interpreted as an evolutionary (or diversifica-

19



A
D

R
D

A
n

se
rv

e
rB

o
t

A
sr

o
o

t
B

a
se

B
ri
d

g
e

B
e

a
n

B
o

t
B

g
se

rv
C

ru
se

W
in

D
ro

id
D

re
a

m
D

ro
id

D
re

a
m

L
ig

h
t

D
ro

id
K

u
n

g
F

u
1

D
ro

id
K

u
n

g
F

u
2

D
ro

id
K

u
n

g
F

u
3

D
ro

id
K

u
n

g
F

u
4

D
ro

id
K

u
n

g
F

u
S

a
p

p
F

a
ke

P
la

ye
r

G
P

S
S

M
S

S
p

y
G

e
in

im
i

G
in

g
e

rM
a

st
e

r
G

o
ld

D
re

a
m

G
o

n
e

6
0

H
ip

p
o

S
M

S
K

M
in

N
ic

ky
S

p
y

P
ja

p
p

s
P

la
n

kt
o

n
R

o
g

u
e

L
e

m
o

n
R

o
g

u
e

S
P

P
u

sh
S

n
d

A
p

p
s

T
a

p
sn

a
ke

Y
Z

H
C

Z
so

n
e

jS
M

S
H

id
e

r
zH

a
sh

 

 

ADRD
AnserverBot

Asroot
BaseBridge

BeanBot
Bgserv

CruseWin
DroidDream

DroidDreamLight
DroidKungFu1
DroidKungFu2
DroidKungFu3
DroidKungFu4

DroidKungFuSapp
FakePlayer

GPSSMSSpy
Geinimi

GingerMaster
GoldDream

Gone60
HippoSMS

KMin
NickySpy

Pjapps
Plankton

RogueLemon
RogueSPPush

SndApps
Tapsnake

YZHC
Zsone

jSMSHider
zHash 0.0

0.1

0.2

0.3

0.4

0.5

Figure 9: Distance matrix between pairs of malware families.

tion) distance. Note that the sequence of such distances is provided as an output
by the algorithm in Fig. 8.

The initial proximity matrix, D(0), for all the families in our dataset is
graphically shown in Fig. 9. As anticipated by the results of the previous ex-
periment, the similarity among some groups of families is striking, while in other
cases there are substantial differences. The results after applying hierarchical
clustering to the datasets are displayed in the dendrogram shown in Fig. 10.
There are a number of interesting observations:

• BaseBridge and AnserverBot are intimately related, hence that they ap-
pear as variants of a common ancestor. Besides, their linkage (distance)
is very small compared to the rest of the families, which suggest a large
share of relevant code structures and, perhaps of functionality too.

• The case of the DroidKungFu variants is remarkably captured. It tran-
spires from our results that DroidKungFu1 and DroidKungFu2 are alike,
and the same occurs with the pair DroidKungFu3 and DroidKungFu4. Fur-
themore, both pairs descend from a common ancestor, say DroidKungFuX,

20



0
.5

5
0
.6

0
.6

5
0
.7

0
.7

5
0

.8
0

.8
5

0
.9

0
.9

5
1

A
n

s
e
rv

e
rB

o
t

B
a
s
e

B
ri
d

g
e

D
ro

id
D

re
a

m

Z
s
o

n
e

D
ro

id
D

re
a
m

L
ig

h
t

P
la

n
k
to

n

D
ro

id
K

u
n

g
F

u
1

D
ro

id
K

u
n

g
F

u
2

D
ro

id
K

u
n

g
F

u
3

D
ro

id
K

u
n

g
F

u
4

G
o

ld
D

re
a
m

P
ja

p
p
s

B
e
a

n
B

o
t

D
ro

id
K

u
n

g
F

u
S

a
p

p

z
H

a
s
h

R
o

g
u

e
L
e
m

o
n

G
e
in

im
i

A
D

R
D

R
o

g
u

e
S

P
P

u
s
h

H
ip

p
o

S
M

S

K
M

in

B
g

s
e

rv

G
in

g
e
rM

a
s
te

r

A
s
ro

o
t

N
ic

k
y
S

p
y

Y
Z

H
C

C
ru

s
e

W
in

T
a

p
s
n

a
k
e

jS
M

S
H

id
e

r

G
o
n

e
6

0

F
a
k
e

P
la

y
e

r

G
P

S
S

M
S

S
p

y

S
n
d

A
p

p
s

Figure 10: Dendrogram obtained after hierarchical clustering over the dataset.

which in turn is connected with GoldDream. This branch connects with
another one formed by the pair Plankton-DroidDreamLight, and both
groups relate to Pjapps, which is among the oldest examples of sophisti-
cated Android OS malware. Finally, the relationship between this group,
Zsone-DroidDream, and BaseBridge-AnserverBot could be explained by
a number of reasons, including the fact that they probably share common
engines.

• The remaining malware families seem rather unrelated, and no signifi-
cant evolutionary relationship can be inferred. Note, too, that distances
approach 1 in this area of the dendrogram, which suggest a very weak
connection.

21



5. Related Work

Tools for automatically detecting and classifying malware have proliferated
over the last years. There are two basic types of malware detection techniques
according to how code is analyzed: static and dynamic analysis. Static analysis
techniques attempt to identify malicious code by unpacking and disassembling
(or decompiling) the specimen and looking into the resulting code. Contrar-
ily, dynamic analysis seeks to identify malicious behaviors after deploying and
executing the sample in a controlled and instrumented environment.

Both static and dynamic analysis extract and analyze a number of features
from the sample being scrutinized. In this regard, several techniques have been
proposed to assist the analyst in classifying the malware, including approaches
based on machine learning [24], data mining [25, 26], expert systems [27], and
clustering [28]. We refer the reader to [14] for an excellent survey on automated
malware analysis techniques.

Malicious applications targeting smartphones, particularly Android OS,
have rocketed over the last few years [2], evolving from relatively simple apps
causing annoyance to complex and sophisticated pieces of code designed for
profit, sabotage or espionage [8]. Current trends in malware engineering sug-
gest that malicious software will continue to evolve its sophistication [29], in part
due to the availability of reuse-oriented development methodologies. This is par-
ticularly important when analyzing piggyback attacks. In this regard, one of the
most common distribution strategy for smartphone malware consists of repack-
aging popular applications and distributing them through alternative markets
with additional malicious code attached (i.e., piggybacked) [19]. In Dendroid,
these two properties are exploited to facilitate analysis and detection.

A substantial number of research works have been recently proposed to en-
hance malware detection and classification based on a variety of techniques [29].
Static analysis techniques have recently gained momentum as efficient mecha-
nisms for market protection; see, e.g., [30], [31], [32], [16], [33], [34], [35], and
[36] to name a few. More precisely, researchers have explored different ways to
detect piggybacked malware [37], [38], [39] by clustering malware instances intro
classes according to some similarity dependencies. While early approaches use
syntactic analysis such as string-based matching [37], recent approaches elab-
orate on semantic analysis [38], e.g., program dependency graphs, as they are
resilient to code obfuscation. In this regard, Desnos [37] apply several com-
pression algorithms to compute normalized information distances between two
applications based on Kolmogorov complexity measurement. Their algorithm
first identifies which methods are identical, and calculates the similarity of the
remainder methods using Normalized Compression Distances (NCD). DNADroid
[38] focuses on detecting cloned apps by comparing program dependency graphs
(PDG) between methods, detecting semantic similarities through graph isomor-
phisms. A system called DroidMOSS is proposed in [39] for detecting repack-
aged applications based on a fuzzy hashing technique. Distinguishing features
are extracted in the form of fingerprints and compared with other applications to
identify similarities. These features are computed by applying traditional hash

22



functions to pieces of code of variable size. The size of the pieces is bounded
by smaller chunks of fixed size called reset points. A chunk is considered a
reset point when the resulting hash is a prime number. Then, the edit dis-
tance is calculated between two applications by comparing their fingerprints.
Finally, authors in [40] present a system for detecting similar Android OS
applications. They propose an optimization strategy over the representation of
apps as an alternative to k-grams based on feature hashing. Feature hashing
reduces the dimensionality of the data analyzed and, therefore, the complex-
ity of computing similarities among their feature sets. In particular, they rely
on the Jaccard similarity over the set of bit vectors representing each applica-
tion. More recently, several other related works have studied different strategies
to recommend appropriate apps to users based on contextual preferences [41],
which is particularly relevant due to a recent rise in the so-called grayware [8].

Dendroid shares with some of these works the idea of finding a suitable
representation for pieces of code, in particular one that facilitates measuring
similarities. However, our use of code structures at the method level is more
fine grained, resulting very useful to tell apart new specimens from those that are
a minor variant of a known strand. Besides, by breaking samples into structural
components we build a large database that can be mined with well-researched
techniques such as those currently incorporated in Dendroid. Similarity, clas-
sification, and hierarchical clustering rely on such structural information, which
is a major difference between our proposal and other existing approaches. For
example, Hanna et al. [40] apply hierarchical clustering over the k-gram hashes
(and pursuing goals different to ours), rather than on high-level representation
of code structures.

In other domains, many works have applied text mining and information
retrieval techniques for decision making and classification, such as for example
[42] and [43]. Furthermore, recent approaches have also used text mining for
detecting similarities [44, 45]. To the best of our knowledge, Dendroid is the
first attempt to apply text mining techniques over malicious code structures.

6. Conclusions and Future Work

In this paper, we have proposed a text mining approach to automatically
classify smartphone malware samples and analyze families based on the code
structures found in them. Our proposal is supported by a statistical analysis of
the distribution of such structures over a large dataset of real examples. Our
findings point out that the problem bears strong resemblances to some questions
arising in automated text classification and other information retrieval tasks. By
adapting the standard Vector Space Model commonly used in these domains,
we have explored the suitability of such techniques to measure similarity among
malware samples, and to classify unknown samples into known families. Our ex-
perimental results suggest that this technique is fast, scalable and very accurate.
We have subsequently studied the use of hierarchical clustering to derive dendo-
grams that can be understood as phylogenetic trees for malware families. This
provides the analyst with a means to analyze the relationships among families,

23



the existence of common ancestors, the prevalence and/or extinction of certain
code features, etc. As discussed in this paper, automated tools such as these
will be instrumental for analysts to cope with the proliferation and increasing
sophistication of malware.

The work presented in this paper can be improved and extended in a number
of ways. At the time of writing this, we are focussing our efforts in four main
working directions:

• Address the dimensionality problem. Feature vectors eventually become
unmanageably large as a consequence of extending the model with new
code structures. In classical text mining, this problem can be easily solved
by the so-called Latent Semantic Analysis (LSA) [46]. Roughly speaking,
LSA performs a singular value decomposition to identify a reduced set
of dimensions (in our case, linear combinations of code structures) that
suffice to model the population of instances.

• Study obfuscation strategies that seek to defeat classification by modifying
the code structures of a malware instance while preserving its intended
purpose (semantics).

• Enrich code structures with an associated semantic describing its func-
tionality. This could automate even further the task of reasoning about
the goals, tactics, etc. of a piece of malicious software.

• Automated identification of countermeasures. If malware sample x can be
counteracted by measure m and sample y is similar to x, there is chance
that countermeasures for y will be similar to m. Enriching code structures
with potential countermeasures would facilitate reasonings such as the
one above and can be instrumental in scenarios where a rapid response is
required, or just to assist the analyst in engineering solutions to thwart a
newly found piece of malware.

Acknowledgements

We are very grateful to Yajin Zhou and Xuxian Jiang from North Carolina
State University for providing us with access to the samples contained in the
Android Malware Genome Project, which has been essential in this work.

References

[1] H. Dediu, “When will tablets outsell traditional
pcs?” March 2012, http://www.asymco.com/2012/03/02/
when-will-the-tablet-market-be-larger-than-the-pc-market/.

[2] Juniper, “2011 mobile threats report,” Juniper Networks, Tech. Rep., 2012.

24



[3] L. Goasduff and C. Pettey, “Gartner says worldwide smartphone sales
soared in fourth quarter of 2011 with 47 percent growth,” Visited April
2012, http://www.gartner.com/it/page.jsp?id=1924314.

[4] Nielsen, “State of the appnation —a year of change and growth in u.s.
smartphones,” Nielsen, Tech. Rep., 2012.

[5] R. van der Meulen and J. Rivera, “Gartner says worldwide mobile phone
sales declined 1.7 percent in 2012,” Visited March 2013, http://www.
gartner.com/newsroom/id/2335616.

[6] E. Chin, A. P. Felt, V. Sekar, and D. Wagner, “Measuring user confidence
in smartphone security and privacy,” in Symposium on Usable Privacy and
Security. Washington: Advancing Science, Serving Society, March 2012.

[7] J. Fenske, “Biometrics in new era of mobile access control,” Biometric
Technology Today, vol. 2012, no. 9, pp. 9–11, 2012.

[8] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM workshop on
Security and privacy in smartphones and mobile devices, ser. SPSM ’11.
New York, NY, USA: ACM, 2011, pp. 3–14.

[9] K. Dunham, Mobile malware attacks and defense. Syngress, 2008.

[10] D. Shih, B. Lin, H. Chiang, and M. Shih, “Security aspects of mobile phone
virus: a critical survey,” Industrial Management & Data Systems, vol. 108,
no. 4, pp. 478–494, 2008.

[11] F-Secure, “Mobile threat report q1 2012,” F–Secure, Tech.
Rep., April 2012, ”http://www.f-secure.com/weblog/archives/
MobileThreatReport Q1 2012.pdf”.

[12] McAfee, “Threats report:fourth quarter 2012,” McAfee, Tech.
Rep., January 2013, http://www.mcafee.com/us/resources/reports/
rp-quarterly-threat-q4-2012.pdf.

[13] M. Schipka, “Dollars for downloading,” Network Security, vol. 2009, no. 1,
pp. 7–11, 2009.

[14] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, “A survey on automated
dynamic malware-analysis techniques and tools,” ACM Comput. Surv.,
vol. 44, no. 2, pp. 6:1–6:42, Mar. 2012.

[15] S. Cesare and Y. Xiang, “Classification of malware using structured control
flow,” in Proceedings of the Eighth Australasian Symposium on Parallel and
Distributed Computing-Volume 107. Australian Computer Society, Inc.,
2010, pp. 61–70.

25



[16] M. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection of ca-
pability leaks in stock android smartphones,” in Proceedings of the 19th
Annual Symposium on Network and Distributed System Security, 2012.

[17] E. Ruzgar and K. Erciyes, “Clustering based distributed phylogenetic tree
construction,” Expert Systems with Applications, vol. 39, no. 1, pp. 89–98,
2012.

[18] V. Rastogi, Y. Chen, and X. Jiang, “Droidchameleon: evaluating android
anti-malware against transformation attacks,” in Proceedings of the 8th
ACM SIGSAC symposium on Information, computer and communications
security, ser. ASIA CCS ’13. New York, NY, USA: ACM, 2013, pp. 329–
334.

[19] Y. Zhou and X. Jiang, “Dissecting android malware: Characterization and
evolution,” in Proceedings of the 33rd IEEE Symposium on Security and
Privacy (Oakland 2012), May 2012.

[20] F. Nielson, H. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 1999.

[21] A. Desnos. (Visited June 2013) Androguard reverse engineering tool.
[Online]. Available: http://code.google.com/p/androguard/

[22] G. Salton, A. Wong, and C.-S. Yang, “A vector space model for automatic
indexing,” Communications of the ACM, vol. 18, no. 11, pp. 613–620, 1975.

[23] S. Tan, “Neighbor-weighted k-nearest neighbor for unbalanced text cor-
pus,” Expert Systems with Applications, vol. 28, no. 4, pp. 667–671, 2005.

[24] Y.-T. Hou, Y. Chang, T. Chen, C.-S. Laih, and C.-M. Chen, “Malicious web
content detection by machine learning,” Expert Systems with Applications,
vol. 37, no. 1, pp. 55–60, 2010.

[25] S.-H. Liao, P.-H. Chu, and P.-Y. Hsiao, “Data mining techniques and ap-
plications a decade review from 2000 to 2011,” Expert Systems with Ap-
plications, vol. 39, no. 12, pp. 11 303 – 11 311, 2012.

[26] S. Thiruvadi and S. C. Patel, “Survey of data-mining techniques used in
fraud detection and prevention,” Information Technology Journal, vol. 10,
no. 4, pp. 710–716, 2011.

[27] S. Sahin, M. R. Tolun, and R. Hassanpour, “Hybrid expert systems: A
survey of current approaches and applications,” Expert Systems with Ap-
plications, vol. 39, no. 4, pp. 4609–4617, 2012.

[28] S. J. Delany, M. Buckley, and D. Greene, “Sms spam filtering: methods
and data,” Expert Systems with Applications, vol. 39, no. 10, pp. 9899–9908,
2012.

26



[29] G. Suarez-Tangil, J. E. Tapiador, P. Peris, and A. Ribagorda, “Evolution,
detection and analysis of malware for smart devices,” 2013.

[30] M. Egele, C. Kruegel, E. Kirda, and G. Vigna, “Pios: Detecting privacy
leaks in ios applications,” in Proceedings of the Network and Distributed
System Security Symposium, 2011.

[31] H. Peng, C. Gates, B. Sarma, N. Li, Y. Qi, R. Potharaju, C. Nita-Rotaru,
and I. Molloy, “Using probabilistic generative models for ranking risks of
android apps,” in Proceedings of the 2012 ACM conference on Computer
and communications security. ACM, 2012, pp. 241–252.

[32] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable
and accurate zero-day android malware detection,” in Proceedings of the
10th international conference on Mobile systems, applications, and services.
ACM, 2012, pp. 281–294.

[33] S. Rosen, Z. Qian, and Z. M. Mao, “Appprofiler: a flexible method of
exposing privacy-related behavior in android applications to end users,” in
Proceedings of the third ACM conference on Data and application security
and privacy. ACM, 2013, pp. 221–232.

[34] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting android
apps for component hijacking vulnerabilities,” in Proceedings of the 2012
ACM conference on Computer and communications security. ACM, 2012,
pp. 229–240.

[35] K. O. Elish, D. D. Yao, B. G. Ryder, and X. Jiang, “A static assurance
analysis of android applications,” Virginia Polytechnic Institute and State
University, Tech. Rep., 2013.

[36] S.-H. Seo, A. Gupta, A. M. Sallam, E. Bertino, and K. Yim, “Detect-
ing mobile malware threats to homeland security through static analysis,”
Journal of Network and Computer Applications, no. 0, 2013.

[37] A. Desnos, “Android: Static analysis using similarity distance,” in System
Science (HICSS), 2012 45th Hawaii International Conference on. IEEE,
2012, pp. 5394–5403.

[38] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting cloned
applications on android markets,” Computer Security–ESORICS 2012, pp.
37–54, 2012.

[39] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in Proceedings of
the second ACM conference on Data and Application Security and Privacy.
ACM, 2012, pp. 317–326.

27



[40] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song, “Juxtapp: A
scalable system for detecting code reuse among android applications,” in
Proceedings of the 9th Conference on Detection of Intrusions and Malware
& Vulnerability Assessment, 2012.

[41] “Which app? a recommender system of applications in markets: Imple-
mentation of the service for monitoring users interaction,” Expert Systems
with Applications, vol. 39, no. 10, pp. 9367 – 9375, 2012.

[42] C. Chibelushi, B. Sharp, and A. Salter, “A text mining approach to tracking
elements of decision making: a pilot study.” in NLUCS. Citeseer, 2004,
pp. 51–63.

[43] V. Gadia and G. Rosen, “A text-mining approach for classification of ge-
nomic fragments,” in Bioinformatics and Biomeidcine Workshops, 2008.
BIBMW 2008. IEEE International Conference on. IEEE, 2008, pp. 107–
108.

[44] A. Y. Rodriguez-Gonzalez, J. F. Martinez-Trinidad, J. A. Carrasco-Ochoa,
and J. Ruiz-Shulcloper, “Mining frequent patterns and association rules
using similarities,” Expert Systems with Applications, vol. 40, no. 17, pp.
6823 – 6836, 2013.

[45] G. Oberreuter and J. D. Velsquez, “Text mining applied to plagiarism
detection: The use of words for detecting deviations in the writing style,”
Expert Systems with Applications, vol. 40, no. 9, pp. 3756 – 3763, 2013.

[46] D. Thorleuchter and D. V. d. Poel, “Technology classification with latent
semantic indexing,” Expert Systems with Applications, 2012.

28


