
argXtract: Deriving IoT Security
Configurations via Automated Static Analysis

of Stripped ARM Cortex-M Binaries
Pallavi Sivakumaran

Royal Holloway, University of London
Egham, United Kingdom

pallavi.sivakumaran.2012@rhul.ac.uk

Jorge Blasco
Royal Holloway, University of London

Egham, United Kingdom
jorge.blascoalis@rhul.ac.uk

ABSTRACT
Recent high-profile attacks on the Internet of Things (IoT) have
brought to the forefront the vulnerabilities in “smart” devices, and
have revealed poor device configuration to be the root cause in
many cases. This has resulted in IoT technologies and devices being
subjected to numerous security analyses. For the most part, auto-
mated analyses have been confined to IoT hub or gateway devices,
which tend to feature traditional operating systems such as Linux
or VxWorks. However, most IoT peripherals, by their very nature of
being resource-constrained, lacking traditional operating systems,
implementing a wide variety of communication technologies, and
(increasingly) featuring the ARM Cortex-M architecture, have only
been the subject of smaller-scale analyses, typically confined to a
certain class or brand of device. We bridge this gap with argXtract,
a framework for performing automated static analysis of stripped
Cortex-M binaries, to enable bulk extraction of security-relevant
configuration data. Through a case study of 200+ Bluetooth Low
Energy binaries targeting Nordic Semiconductor chipsets, as well
as smaller studies against STMicroelectronics BlueNRG binaries
and Nordic ANT binaries, argXtract has discovered widespread
security and privacy issues in IoT, including minimal or no pro-
tection for data, weakened pairing mechanisms, and potential for
device and user tracking.

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
IoT, Firmware Analysis, Stripped Binaries, ARM, Cortex-M, Blue-
tooth Low Energy, ANT, Nordic, STMicroelectronics

ACM Reference Format:
Pallavi Sivakumaran and Jorge Blasco. 2021. argXtract: Deriving IoT Se-
curity Configurations via Automated Static Analysis of Stripped ARM
Cortex-M Binaries. In Annual Computer Security Applications Conference
(ACSAC ’21), December 6–10, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3485832.3488007

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACSAC ’21, December 6–10, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8579-4/21/12. . . $15.00
https://doi.org/10.1145/3485832.3488007

1 INTRODUCTION
The Internet of Things (IoT) is growing at a rapid pace, with an
estimated 22 billion IoT devices in use globally at the end of 2018,
projected to grow to 50 billion by 2030 [75]. These devices are in-
creasingly handling users’ personal and health data, and performing
security-related functions. It is therefore imperative to fully under-
stand the security and privacy implications of IoT deployments.

Recent years have shown that there is legitimate cause for con-
cern, as numerous flaws have been uncovered in IoT devices, some
of which have been exploited at a large-scale (e.g., Mirai [22],
Brickerbot [64]). Severe vulnerabilities have also been discovered
in cardiac devices [45], baby heart monitors [80] and webcams [74].
The root cause on many occasions was poor device configuration,
e.g., default passwords [5, 51] or poor protection for data [53, 91].

The configuration of an IoT device can hence be a vital source of
information regarding possible vulnerabilities, and device firmware
is often the most definitive source of information regarding its con-
figuration. However, analysing IoT firmware is notoriously difficult,
particularly in the case of peripheral firmware files, which are often
only available as stripped binaries, i.e., files that do not contain head-
ers, section information or debugging symbols. Further, many IoT
peripherals now utilise ARM Cortex-M processors [9]. These fea-
ture inline data and instruction sets that are not yet fully supported
by current disassemblers, which greatly complicates analysis [41].

In this work, we present argXtract, a framework for bulk extrac-
tion of security-relevant configuration information from stripped
ARM Cortex-M binaries via a partial-knowledge automated static
analysis. argXtract overcomes various challenges associated with
analysing stripped Cortex-M binaries and provides a generic frame-
work for extracting arguments to a Call Of Interest (COI); this can
be an ARM supervisor call or a standard function call, identified
via svc instructions and function pattern matching, respectively.

We also present three case studies, selected based on the avail-
ability of real-world Cortex-M binaries, where we use argXtract to
analyse the security configurations from: (i) binaries implementing
Bluetooth Low Energy (BLE) and targeting Nordic Semiconduc-
tor chipsets, where configurations are made via supervisor calls,
(ii) binaries implementing BLE and targeting STMicroelectronics
BlueNRG chipsets, where configurations are made via function
calls, and (iii) binaries implementing the ANT [33] technology and
targeting Nordic chipsets, with configurations via supervisor calls.

The results reveal widespread security issues in IoT peripherals,
including minimal or no protection for data, inconsistent permis-
sions, artificially weakened pairing mechanisms, and the potential
for tracking devices (and possibly also users).

https://doi.org/10.1145/3485832.3488007
https://doi.org/10.1145/3485832.3488007

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

We summarise our main contributions as follows:
• We develop argXtract, a framework for performing auto-
mated static analysis of stripped ARM Cortex-M binaries, to
enable extraction of security-related configuration informa-
tion (§3). We evaluate argXtract in terms of the accuracy
of function boundary estimation and pattern matching, and
correctness of extracted results (§4).

• We use argXtract to extract security configurations from
stripped Nordic BLE binaries (§5), STMicroelectronics’ Blu-
eNRG binaries and Nordic ANT binaries (§6). The results
reveal widespread lack of protection for data, inconsistent
data access controls and serious privacy vulnerabilities.

• We make argXtract available as open source code for the
benefit of the research community at https://github.com/
projectbtle/argXtract. The repository includes configuration
files for case studies presented in this paper.

2 MOTIVATION
Configuration issues have been the root cause for several recent at-
tacks on IoT devices. For example, Mirai exploited the use of default
credentials to infect IoT devices [5], while some baby monitors,
vaping products and e-skateboards did not implement basic protec-
tion for their data [52, 53, 91]. This left the devices vulnerable to
false data injection and the potential for physical harm to the user.
The configuration of an IoT device can therefore reveal exploitable
vulnerabilities and is a vector of interest in security analyses.

There are several possible sources for this configuration informa-
tion, including the devices themselves, the firmware they run, or any
application or website they interface with. We analyse the merits
and shortcomings of each of these potential sources in Appendix A.
Arguably, firmware is the richest standalone source of information
regarding a device’s security configuration. With devices such as
IoT hubs and gateways (e.g., mobile phones, routers), which often
run some version of the Linux OS, familiar filesystem structures
and commands may be identifiable within firmware, which can
contribute towards the analysis. Even so, the analysis will generally
not be straightforward. Analysis is much more complex for IoT
peripherals, which may run a custom OS, or have no OS at all. This
has resulted in far fewer analyses of IoT peripheral binaries. We
bridge this gap by focusing on peripheral firmware analysis.

IoT peripherals may implement one or more communication
technologies, such as BLE [16], Zigbee [93], ANT [33] or Thread [81].
Many of these technologies have fully-fledged stacks, which must
be implemented within peripheral firmware. To ease development,
many IoT chipset vendors implement the technology stacks them-
selves and provide APIs through which developers can configure
the stacks within their applications [57, 78, 79]. Developers may
also use library functions to perform other configurations.

We present an example configuration function in Figure 1a,
where a fixed passkey is defined for the BLE pairing process using
an API call sd_ble_opt_set. Fixed passkeys reduce the security
of BLE pairing and are therefore a vulnerability of interest. To iden-
tify fixed passkeys from firmware, we need to determine whether
sd_ble_opt_set (which we term a Call Of Interest, or COI) is
called with a fixed passkey as its argument. To do this, we need
to pinpoint the location of the COI within the firmware binary,

uint8_t passkey [] = "123456";
ble_opt_t ble_opt;
ble_opt.gap_opt.passkey.p_passkey = &passkey [0];
err_code = sd_ble_opt_set(BLE_GAP_OPT_PASSKEY , &ble_opt);

(a) Source C code.

1eaba: 4ab8 ldr r2, [pc, #736] ; (1ed9c)
1eabc: ab06 add r3, sp, #24
1eabe: 6811 ldr r1, [r2, #0]
1eac0: 2022 movs r0, #34 ; 0x22
1eac2: 9106 str r1, [sp, #24]
1eac4: 8891 ldrh r1, [r2, #4]
1eac6: 8099 strh r1, [r3, #4]
1eac8: 7992 ldrb r2, [r2, #6]
1eaca: a908 add r1, sp, #32
1eacc: 719a strb r2, [r3, #6]
1eace: 9308 str r3, [sp, #32]
1ead0: f7fffe3a bl 1e748 <sd_ble_opt_set >

1ed9c: 00021 f14 .word 0x00021f14

21f0c: 2528 2000 0001 0700 3231 3433 3635 0000

(b) Disassembly of unstripped binary.

0x3aba: b84a ldr r2, [pc, #0x2e0]
0x3abc: 06ab add r3, sp, #0x18
0x3abe: 1168 ldr r1, [r2]
0x3ac0: 2220 movs r0, #0x22
0x3ac2: 0691 str r1, [sp, #0x18]
0x3ac4: 9188 ldrh r1, [r2, #4]
0x3ac6: 9980 strh r1, [r3, #4]
0x3ac8: 9279 ldrb r2, [r2, #6]
0x3aca: 08a9 add r1, sp, #0x20
0x3acc: 9a71 strb r2, [r3, #6]
0x3ace: 0893 str r3, [sp, #0x20]
0x3ad0: fff73afe bl #0x3748

0x3d9c: 141f subs r4, r2, #4
0x3d9e: 0200 movs r2, r0

0x6f14: 3132 adds r2, #0x31
0x6f16: 3334 adds r4, #0x33
0x6f18: 3536 adds r6, #0x35

(c) Disassembly of stripped binary.

Figure 1: Disassembly for stripped vs. unstripped binary.

and then analyse the arguments that are passed to it. Figure 1b
depicts the assembly instructions corresponding to this section of
code, obtained by disassembling the firmware binary. From the
instructions, we are able to identify that the function call occurs at
address 0x1ead0, that the passkey bytes occur at address 0x21f14
(as 323134333635 [little-endian], i.e., “123456”), and that they are
referenced by their absolute location at address 0x1ed9c. The abil-
ity to correctly deduce these pieces of information depends on a
set of conditions:

C1 Knowledge of function location and callers’ addresses (i.e.,
knowing that the code for sd_ble_opt_set is at address
0x1e748 and that it is called at address 0x1ead0).

C2 Knowledge of locations of inline data (i.e., knowing that the
bytes at addresses 0x1ed9c and 0x21f0c should be inter-
preted as data rather than as code).

C3 Firmware being loaded at the correct offset/application code
base (such that the absolute address 0x21f14 results in bytes
being loaded from the correct location).

This information is present within headers and symbol tables.
However, due to storage considerations, IoT peripherals tend to
ship firmware with this information removed, i.e., as stripped bina-
ries. Figure 1c depicts the disassembly of the binary file with ELF

https://github.com/projectbtle/argXtract
https://github.com/projectbtle/argXtract

argXtract: Automated Analysis of Stripped IoT Binaries ACSAC ’21, December 6–10, 2021, Virtual Event, USA

headers and debugging symbols stripped out. The disassembly of
the stripped binary does not contain information about function
names (failing Condition C1), thereby making it difficult to deduce
functionality. Also, data segments have been incorrectly interpreted
by the disassembler as code (failing Condition C2),1 which leads
to incorrect results when performing value tracing and precludes
the use of emulation frameworks (e.g., QEMU [13], unicorn [63]).
Further, the code has been loaded at the incorrect offset (failing
Condition C3), which means absolute addressing will fail.

Contributing to this problem is the fact that many resource-
constrained IoT devices feature ARM processors [50] with Thumb
or Thumb-2 instruction sets (instead of the ARM instruction set)
for greater code density [35]. In fact, the ARM Cortex-M architec-
tures, which are very popular in embedded systems [9], support
only the Thumb and Thumb-2 instruction sets. These instruction
sets are not yet fully supported by many disassemblers. Out of the
current state-of-the-art reverse-engineering tools, IDA (free) [38]
does not currently support ARM, while Debin [37] and BAP [18] do
not fully support the Thumb instruction set. Testing free reverse-
engineering tools that do support Thumb analysis against a simple
stripped Cortex-M IoT binary, we found that radare2 [2] failed to
identify almost 40% of the functions within the binary (analysing
using aaa and aaaa), Ghidra [55] failed to identify 30% of the func-
tions, while angr [83] was unable to produce a valid Control Flow
Graph - a step prior to analysis. Our observation regarding the
robustness of angr and radare2 for Thumb mode analysis is sup-
ported by [41], which also noted that Ghidra too has better support
for the ARM instruction set than for Thumb. Further, because IoT
peripheral binaries typically do not include the technology stack
or ROM data, dynamic analysis approaches are unsuitable. This
reveals a gap in the automated IoT security analysis landscape and
prompted the development of argXtract.

3 ARGXTRACT
Wedesign argXtract to take as input the disassembly of a Cortex-M
binary,2 perform several levels of processing, and finally extract
and output arguments to security-relevant Calls Of Interest. The
processing is divided into the following stages: Application code
base identification, for correct absolute addressing (§3.1); Data
identification, such that data is not incorrectly interpreted as code
(§3.2); Function block identification, to enable call execution
path generation and function pattern matching (§3.3); COI identi-
fication (function call or ARM supervisor call), to determine trace
termination points (§3.4); Tracing and argument processing, to
extract and process the arguments to a COI (§3.5).

3.1 Application Code Base Identification
As described in §2, an incorrect address offset will lead to the failure
of absolute addressing. argXtract combines known address infor-
mation with obtained addresses to compute the application code
base. The addresses of core interrupt handlers are known, as they
are present at specific offsets within the Vector Table (VT), which is
1Note that inline data is far more common in ARM than in x86/x64 [41], and the
misinterpretation of such data as code is a problem that is encountered even with
state-of-the-art disassemblers [32].
2The input disassembly is obtained via any existing disassembler and will very likely
feature the issues described in §2.

000272 b4 <Reset_Handler >:
272b4: 4906 ldr r1, [pc, #24] ;(272d0)
272b6: 4a07 ldr r2, [pc, #28] ;(272d4)
272b8: 4b07 ldr r3, [pc, #28] ;(272d8)
272ba: 1a9b subs r3, r3, r2
272bc: dd03 ble.n 272c6
272be: 3b04 subs r3, #4
272c0: 58c8 ldr r0, [r1, r3]
272c2: 50d0 str r0, [r2, r3]
272c4: dcfb bgt.n 272be
272c6: f002 f8c9 bl 2945c <SystemInit >
272ca: f7ff ffb9 bl 27240 <_mainCRTStartup >
272ce: 0000 .short 0x0000
272d0: 00042 c54 .word 0x00042c54
272d4: 20002 b28 .word 0x20002b28
272d8: 200031 d0 .word 0x200031d0

Figure 2: Identification of .data using Reset Handler.

located at 0x00000000within the stripped binary [10]. Correspond-
ing interrupt handler code within the stripped binary is identified
by exploiting the fact that at least one interrupt handler is usually
the default handler, i.e., an endless loop or self-targeting branch.
argXtract examines the disassembly for self-targeting branches
and compares their addresses against VT addresses. If the final 3 hex
digits of a self-targeting branch and a VT address match, the offset is
computed as 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 𝑣𝑡𝐴𝑑𝑑𝑟𝑒𝑠𝑠 − 𝑠𝑒𝑙 𝑓𝑇𝑎𝑟𝑔𝑒𝑡𝑖𝑛𝑔𝐵𝑟𝑎𝑛𝑐ℎ𝐴𝑑𝑑𝑟𝑒𝑠𝑠 .
The binary disassembly is reloaded at the correct offset, to satisfy
Condition C3.

3.2 Data Identification
Stripped Cortex-M binaries do not contain section information.
Their disassembly therefore produces a block of instructions with a
.text (i.e., code) segment and often a .data segment, with no de-
marcation between the two and the .data segment misinterpreted
as code. The .text segment also has inline data, often misinter-
preted as code and resulting in value tracing errors.

The data identification component of argXtract uses informa-
tion from the Reset Handler, whose address is read from the VT, to
identify the location and correct starting address of the .data seg-
ment. It also identifies inline data using four primary sources: (i) PC-
relative memory-loads (e.g., ldr, ldrh), (ii) direct write-to-PC oper-
ations (iii) table branches (tbb, tbh), and (iv) compact switch table
helpers such as __ARM_common_switch8 and __gnu_thumb1
variants. These operations aid in satisfying Condition C2 (see §2).
We describe the data identification mechanism for each of these
sources in further detail below.

3.2.1 Identification of .data. The Reset Handler often contains
the final address of the .text segment as well as the start and end
addresses for the .data segment. This is present in the form of
consecutive memory-loads, where the first memory-load reads in
the address from which the .data segment starts and subsequent
memory-loads read the (actual) start and end addresses for the
.data segment. An example has been shown in Figure 2.

argXtract analyses instructions within the Reset Handler to
determine whether they match the required structure. If they do,
then the addresses starting after the final address of the .text seg-
ment and ending at the end of the file are marked as data, i.e., as the
.data segment. The addresses within the newly-identified .data
segment are also modified according to the information extracted

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

1a83c: 2c17 cmp r4, #23
1a83e: d8fc bhi.n 1a83a
1a840: 4ac7 ldr r2, [pc, #796]
1a842: 00a3 lsls r3, r4, #2
1a844: 58d3 ldr r3, [r2, r3]
1a846: 469f mov pc, r3

Figure 3: Example write-to-PC operation.

2894a: 2e08 cmp r6, #8
2894c: d219 bcs.n 28982
2894e: e8df f006 tbb [pc, r6]
28952: 1b181804 ; data
28956: 172 f2f22 ; data
2895a: 8901 ldrh r1, [r0, #8]

Figure 4: Example table branch structure.

from the Reset Handler. In the example in Figure 2, the memory-
loads at addresses 0x272b4 and 0x272b6 denote that the addresses
from 0x42c54 onward need to be reinterpreted as data, and need
to be re-addressed with addresses starting from 0x20002b28.

3.2.2 Identification of inline data via PC-relative memory-loads. A
memory-load that loads data from an address within the firmware
file will specify the source address relative to either the Program
Counter (PC) or a register. Register-relative loads may require
significant tracing in some cases. However, PC-relative loads are
straightforward to analyse. argXtract performs a linear scan for
PC-relative memory-loads, calculates the address from which data
is loaded and marks it as data, re-processing residual bytes as in-
structions where required.

3.2.3 Identification of inline data via write-to-PC operations. Direct
write-to-PC operations are sometimes used to accomplish code
branches. Figure 3 depicts an example. This operation loads a branch
address from an address within the firmware and writes the branch
address to the PC. The address from which the branch address is
loaded (i.e., the ldr source at 0x1a844, obtained in this example by
adding the contents of r2 and r3) must be interpreted as data, but is
misinterpreted as code within the disassembly of stripped binaries.

When a write-to-PC is encountered (at 0x1a846 in Figure 3), the
preceding integer comparison (0x1a83c) is identified and the range
of comparison values is determined using subsequent conditional
branches (0x1a83e). Instructions following the branch and until
the non-PC-relative memory-load (0x1a844) are executed for all
possible comparison values, to produce a range of addresses from
which the branch addresses are loaded. This range is marked as data.
The branch addresses are obtained by executing until the PC-write
instruction, and are used for function identification (§3.3).

3.2.4 Identification of inline data via table branches. Table branch
instructions (tbb, tbh) were introduced in the ARMv7-M architec-
ture to handle complex branching conditions. Figure 4 depicts a sam-
ple table branch instruction (at address 0x2894e). The instruction
is immediately followed by a branch table (0x28952 and 0x28956).
This table should be interpreted as data, but is misinterpreted by
disassemblers as code in the absence of debugging symbols.

In the case of table branch instructions, an index value is used
to index into the branch table. An integer comparison is performed

18228: bl 182b0 <functionB >

000182 b0 <functionB >:
182b0: push {r4, lr}
182b2: cmp r2, #32
182b4: blt.n 182c0 ;skips pop at 182be
182b6: mov r0, r1
182b8: subs r2, #32
182ba: lsrs r0, r2
182bc: movs r1, #0
182be: pop {r4, pc}
182c0: mov r3, r1
182c2: lsrs r3, r2
182c4: lsrs r0, r2
182c6: movs r4, #32
182c8: subs r2, r4, r2
182ca: lsls r1, r2
182cc: orrs r0, r1
182ce: mov r1, r3
182d0: pop {r4, pc}
182d2: nop

000182 d4 <functionC >: ;not called within code
182d4: ldrb r2, [r0, #0]

Figure 5: Example assembly for function boundary
identification.

against the register containing this index value prior to the table
branch instruction. This provides an indication as to the size of the
branch table. In Figure 4, the comparison (0x2894c) and conditional
branch (0x2894a) indicate that the branch table has 8 entries. Be-
cause the table branch instruction in our example is tbb, the table
will consist of single-byte offsets (if the instruction had been tbh,
the table would contain halfword offsets). argXtract processes this
information and marks the 8 bytes from the PC onward as data.

3.2.5 Identification of inline data via compact switch helpers. Prior
to the introduction of table branch instructions, “helper” functions
were utilised to handle switch-case constructs. The GCC compiler
produces __gnu_thumb1 variants, while Keil produces __ARM_-
common_switch8. These helper functions have identifiable func-
tion prologues, and calls to the functions are followed by an index
table, similar to table branch instructions.

argXtract determines the locations of the helper functions and
applies function-specific processing to determine the size of the
index table. It also determines the addresses of resultant branches,
to be used by the function boundary identification module.

3.3 Function Boundary Identification
Function boundary identification is used within argXtract to en-
able function pattern matching and call execution path determina-
tion. The challenges involved in function boundary identification
have been widely studied. These include indirect function calls,
absence of specific function prologues, indeterminate location of
start instructions, absence of a clear exit point and presence of mul-
tiple exit points [90]. The presence of inline data within Cortex-M
disassembly, which may be misinterpreted as code, can further
complicate function boundary estimation [32].

argXtract’s function boundary identification is performed in
two stages. First, an initial set of high-certainty candidates for
function start addresses is generated by obtaining the addresses
of all interrupt handler functions from the Vector Table (i.e., each
interrupt handler is considered a separate function). Targets of

argXtract: Automated Analysis of Stripped IoT Binaries ACSAC ’21, December 6–10, 2021, Virtual Event, USA

0x18228: bl 0x182b0
...
0x182b0: push {r4, lr}
0x182b2: cmp r2 , #0x20
0x182b4: blt #0 x182c0
0x182b6: mov r0 , r1
0x182b8: subs r2, #0x20
0x182ba: lsrs r0, r2
0x182bc: movs r1, #0
0x182be: pop {r4, pc}
0x182c0: mov r3 , r1
0x182c2: lsrs r3, r2
0x182c4: lsrs r0, r2
0x182c6: movs r4, #0x20
0x182c8: subs r2, r4, r2
0x182ca: lsls r1, r2
0x182cc: orrs r0, r1
0x182ce: mov r1 , r3
0x182d0: pop {r4, pc}
0x182d2: nop
0x182d4: ldrb r2, [r0]

(a) Capstone disassembly (starting point).

0x18228: bl 0x182b0
...
0x182b0: push r4, lr ;start
0x182b2: cmp r2, #0x20
0x182b4: blt #0 x182c0
0x182b6: mov r0, r1
0x182b8: subs r2, #0x20
0x182ba: lsrs r0, r2
0x182bc: movs r1, #0
0x182be: pop {r4, pc}
0x182c0: mov r3, r1
0x182c2: lsrs r3, r2
0x182c4: lsrs r0, r2
0x182c6: movs r4, #0x20
0x182c8: subs r2, r4, r2
0x182ca: lsls r1, r2
0x182cc: orrs r0, r1
0x182ce: mov r1, r3
0x182d0: pop {r4, pc}
0x182d2: nop
0x182d4: ldrb r2, [r0]

(b) Identify function blocks using b, bl.

0x18228: bl 0x182b0
...
0x182b0: push r4, lr ;start
0x182b2: cmp r2, #0x20
0x182b4: blt #0 x182c0
0x182b6: mov r0, r1
0x182b8: subs r2, #0x20
0x182ba: lsrs r0, r2
0x182bc: movs r1, #0
0x182be: pop r4, pc ;end?
0x182c0: mov r3, r1
0x182c2: lsrs r3, r2
0x182c4: lsrs r0, r2
0x182c6: movs r4, #0x20
0x182c8: subs r2, r4, r2
0x182ca: lsls r1, r2
0x182cc: orrs r0, r1
0x182ce: mov r1, r3
0x182d0: pop {r4, pc} ;end?
0x182d2: nop
0x182d4: ldrb r2, [r0]

(c) Mark potential exit points.

0x18228: bl 0x182b0
...
0x182b0: push r4, lr ;start
0x182b2: cmp r2 , #0x20
0x182b4: blt #0x182c0
0x182b6: mov r0 , r1
0x182b8: subs r2, #0x20
0x182ba: lsrs r0, r2
0x182bc: movs r1, #0
0x182be: pop r4, pc ;end?
0x182c0: mov r3 , r1
0x182c2: lsrs r3, r2
0x182c4: lsrs r0, r2
0x182c6: movs r4, #0x20
0x182c8: subs r2, r4, r2
0x182ca: lsls r1, r2
0x182cc: orrs r0, r1
0x182ce: mov r1 , r3
0x182d0: pop {r4, pc} ;end?
0x182d2: nop
0x182d4: ldrb r2, [r0]

(d) Identify instructions that skip exits.

0x18228: bl 0x182b0
...
0x182b0: push r4, lr ;start
0x182b2: cmp r2, #0x20
0x182b4: blt #0 x182c0
0x182b6: mov r0, r1
0x182b8: subs r2, #0x20
0x182ba: lsrs r0, r2
0x182bc: movs r1, #0
0x182be: pop {r4, pc}
0x182c0: mov r3, r1
0x182c2: lsrs r3, r2
0x182c4: lsrs r0, r2
0x182c6: movs r4, #0x20
0x182c8: subs r2, r4, r2
0x182ca: lsls r1, r2
0x182cc: orrs r0, r1
0x182ce: mov r1, r3
0x182d0: pop {r4, pc} ;end?
0x182d2: nop
0x182d4: ldrb r2, [r0]

(e) Remove skipped exit instructions.

0x18228: bl 0x182b0
...
0x182b0: push r4, lr ;start
0x182b2: cmp r2, #0x20
0x182b4: blt #0 x182c0
0x182b6: mov r0, r1
0x182b8: subs r2, #0x20
0x182ba: lsrs r0, r2
0x182bc: movs r1, #0
0x182be: pop {r4, pc}
0x182c0: mov r3, r1
0x182c2: lsrs r3, r2
0x182c4: lsrs r0, r2
0x182c6: movs r4, #0x20
0x182c8: subs r2, r4, r2
0x182ca: lsls r1, r2
0x182cc: orrs r0, r1
0x182ce: mov r1, r3
0x182d0: pop {r4, pc}
0x182d2: nop
0x182d4: ldrb r2, [r0] ;start

(f) Identify suitable start for next function.

Figure 6: Process used by argXtract for identifying function start addresses.

branch-and-link (bl) and branch (b) instructions are added to this
set, subject to satisfying requirements regarding function prologues.
Next, a function boundary estimation algorithm is executed against
each block of instructions between two addresses in the sorted set.
The algorithm operates on the basic principle that, while a function
may have multiple exit instructions due to conditional executions,
it must have mechanisms for bypassing all but one of the exit points.
This could be via conditional branch instructions or a switch/branch
table (as identified in §3.2). argXtract determines all potential exit
points (e.g., data, pop, bx lr, unconditional branches to lower ad-
dresses or outside the current block) within the block of instructions
that is being analysed and marks the exit point that cannot be by-
passed as the ultimate function exit. The next valid instruction is
determined to be the beginning of the next function. This procedure
is performed iteratively to obtain the final list of function blocks.

We further illustrate this algorithm using the code example in
Figure 5 as reference. This reference code contains two functions, de-
noted as functionB and functionC. Of these, functionB is called

via a bl instruction at 0x18228, while functionC is called indirectly
via a blx call (which means the starting address of functionC
cannot be identified without some level of register tracing). Fig-
ure 6a depicts the equivalent assembly code obtained using the
Capstone [62] disassembler against the stripped version of the bi-
nary. To estimate function boundaries for this disassembly, we first
identify high-confidence function starts, including targets of bl in-
structions. This will result in 0x182b0 being identified as a function
start (Figure 6b). This corresponds to functionB. We next apply our
function boundary estimation algorithm to the block of assembly
instructions beginning at 0x182b0 as follows:

(i) Mark out possible exit points, such as pop, load-to-PC and bx
lr instructions, as well as data. As shown in Figure 6c, there are
two potential exit points, at addresses 0x182be and 0x182d0.

(ii) Look for branches that skip the exit points. Figure 6d shows
that the branch condition at 0x182b4 skips the exit point at 0x182be.
This exit point is therefore considered to be part of the existing
function (i.e., the one beginning at 0x182b0).

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

(iii) Remove exit points that are skipped. We are left with one
other potential exit point at 0x182d0. It is considered the final exit
point of the function (see Figure 6e).

(iv) Identify the next valid instruction as the start of the next
function. Initially, we consider the instruction at 0x182d2 to be the
start of the next function. However, this address contains a nop
instruction. Therefore, we skip it and mark 0x182d4 as the start of
the next function, as shown in Figure 6f. This corresponds to the
start address of functionC.

This process is then repeated from the start of the new function
block (i.e., from 0x182d4), until the end of the block is reached.

Function block annotation: argXtract maintains a data ob-
ject containing information on cross-references to and from a func-
tion block, as well as the function’s call depth. The call depth indi-
cates the maximum number of functions that get called iteratively
by a function. It is used for function pattern matching and tracing.

3.4 COI Identification
A COI in our framework could be a standard function call or could
be translated to an ARM supervisor call (svc). argXtract identifies
calls to the svcs or functions of interest using the techniques de-
scribed in §3.4.1 and §3.4.2, respectively. In both cases, the addresses
of the calling instructions are stored, to be used in the tracing step.3
This then satisfies Condition C1. After this step, all pre-conditions
for analysing a stripped ARM binary (see §2) will be satisfied.

3.4.1 Supervisor call identification. In svc analysis mode, an input
object containing the svc numbers of interest (obtained from vendor
SDKs) is provided to argXtract. A linear scan is performed over the
disassembly to obtain the addresses of the relevant svc instructions.

3.4.2 Pattern matching. Identifying function calls is far more com-
plex than identifying supervisor calls, as functions cannot be im-
mediately identified within assembly. We exploit the fact that con-
figuration API functions (such as those provided by vendors for
performing configurations to IoT stacks) accept inputs in a specific
order, which are passed within registers in a specific sequence for
Cortex-M. In addition, most functions generate artefacts that are
detectable within memory and/or registers, i.e., as output or inter-
mediate values. For each function of interest, we define a “function
pattern file”, which is a collection of test sets containing register and
memory inputs, and the corresponding outputs (which could be ac-
tual output values in registers or memory, or intermediate values at
detectable locations). In the case of functions that store identifiable
values at binary-specific locations that cannot be predetermined,
we propose wildcard addresses, where expected values are specified
at some predetermined offset from the wildcard address.

A pattern file is passed to each of the functions that have been
identified for the binary under test (see §3.3). The function instruc-
tions are executed with the input register and memory values spec-
ified in the pattern file. Output register and memory contents are
compared against the expected values. If a single function matches
the given pattern, then this is taken to be the function of interest. In
the case of nested function calls, the function with the lowest call
depth that satisfies the given pattern is taken to be the function of in-
terest. Polymorphismwill be detected if the processing of the inputs
3Direct calls are identified. However, calls via blx are not.

{'sd_ble_opt_set ':{
'memory ':{... , 20007 f60:'31', 20007 f61:'32', 20007 f62

:'33', 20007 f63:'34', 20007 f64:'35', 20007 f65
:'36', 20007 f66:'00', 20007 f68:'60', 20007 f69:'7f
', 20007 f6a:'00', 20007 f6b:'20', ...},

'registers ':{... 'r0 ': '00000022 ' , 'r1 ': '20007f68 ', ..}}}

(a) Register/memory contents.

{"args": {
"0": {...},
"1": {" in_out ": "in",

"ptr_val ": "pointer",
"data": {

"p_opt": {
"ptr_val ": "pointer",
"length_bits ": 48,
"type": "hex" }}}}}

(b) Argument Definition Object.

"output ": {
"sd_ble_opt_set ": [
{

"opt_id ": 34,
"p_opt":

"313233343536"
}

]
}

(c) Partial output file.

Figure 7: Argument processing.

differs between the functions such that the artefacts/outputs are
different.4 Note however that if two functions produce the same out-
puts for any given inputs, then function pattern matching will fail.

3.5 Tracing and Argument Processing
Once COIs have been identified (as described in §3.4), backward
inter-procedural tracing is used to determine all call execution
paths. Forward-tracing along the paths then leads to the COI(s).
The arguments to a COI are contained within registers r0-r3 (or
on the call stack) [7, 8, 85]. Some registers contain the argument
of interest, while others may hold pointers to data in memory.
Therefore, when a COI is reached, the contents of both the register
object and the memory map are returned to an argument analysis
component for processing.

The type and format of data that are used as arguments to COIs
are obtained from vendor SDKs and provided to argXtract in the
form of Argument Definition Objects. These are JSON templates that
describe the expected structure of bits for each input argument
using predefined keywords.5 For example, Figure 7b depicts the Ar-
gument Definition Object for the sd_ble_opt_set COI discussed
in §2 (Figure 1a). A corresponding trace output may look like that
depicted in Figure 7a. Taking the second argument as an example,
we note that it is defined as a pointer to a pointer to a 6-byte (48-bit)
array. This argument is contained within register r1, which accord-
ing to the trace output in Figure 7a contains a value of 20007f68.
As the Argument Definition Object indicates that this is a pointer,
we refer to the contents of memory. The memory object in Figure 7a
shows that the address 0x20007f68 contains the value 20007f60.
This (also being a pointer) is interpreted as a memory address,
0x20007f60. This address contains the hex value 0x313233343536,
which corresponds to the ASCII string “123456”, i.e., the value spec-
ified as the fixed passkey in our example in Figure 1a. This results
in the output depicted in Figure 7c.

4Note that input structures within function pattern files are provided in byte format.
Therefore, differences in input type do not impact the analysis.
5We adopt this template-based approach for greater flexibility, such that supporting
additional COIs only requires including new Argument Definition Objects, rather than
needing to add extra COI-specific code.

argXtract: Automated Analysis of Stripped IoT Binaries ACSAC ’21, December 6–10, 2021, Virtual Event, USA

4 EVALUATION
We implement argXtract using Python. We select Capstone as the
disassembler, as it underpins ARM disassembly for a number of
existing reverse-engineering and analysis tools, including radare,
angr and binwalk. In this section, we evaluate our implementation
in terms of the accuracy of function block identification and pattern
matching, and the correctness of extracted configurations.

4.1 Test Set and Ground Truth
There is no existing ground truth for ARM Cortex-M, i.e., binaries
with known function locations and configurations. We therefore
generate a test set of 28 stripped binaries for testing and verification
purposes. The binaries target chipsets from NXP, STMicroelectron-
ics, Nordic Semiconductor and Texas Instruments, for multiple IoT
technologies including Zigbee, ANT, BLE, Thread and 802.15.4. The
binaries are compiled using GCC, IAR, Keil and Clang, depending
on the chipset vendor. We provide a detailed description of the
test binaries in our code repository. For ground truth, we obtain
the configuration for each binary by disassembling its unstripped
version using the GNU ARM embedded toolchain.

4.2 Accuracy of Function Identification
We evaluate the accuracy of argXtract’s function identification
(§3.3) by identifying function start addresses for the 28 stripped
binaries within our test set and comparing them against the actual
functions from the unstripped versions. For comparison, we also do
the same using radare2 and ghidra. Table 1 presents the results.

The table shows that for all but five binaries, more than 95% of
functions are correctly identified by argXtract. The results are
more variable for radare2 and ghidra, but in general the TPRs
obtained by these two tools are lower (often significantly lower)
than those obtained by argXtract. Manual analysis of a sample
of functions (across the test set) that were correctly identified by
argXtract but not by radare2 or ghidra showed that many such
functions occurred after inline data or less traditional function
exit points. The techniques employed by argXtract for inline data
identification and function boundary identification enable it to han-
dle such instances and identify a greater proportion of function
start addresses correctly. There was a single exception (binary with
ID=0d2), where argXtract resulted in a TPR of 0% while radare2
and ghidra identified approximately 70% of functions. This was a
binary where the .text segment was split into two sections, each
with a different offset. argXtractwas unable to compute the offsets
in this case, which meant that further analysis was not possible.
Additionally, manual analysis of the remaining four cases where
argXtract produced a TPR < 95% showed that the unidentified
functions were of unusual structure, e.g., functions accessed via
direct conditional branches, or containing only a bx lr instruction.
These are likely to be fragments of other functions or shared func-
tions. We observe that for the vast majority of such cases, radare2
and ghidra also failed to identify the functions.

Examining false positives (regardless of the analysis tool), we
found that in many cases misidentified functions were either where
unannotated data had been identified as the start of function blocks,
or where a logical function start can be assumed, e.g., blocks of
alternating ldr instructions and data bytes causing each ldr to

Table 1: True Positive Rates (TPR) and Effective False
Positive Rates (EFPR) for function block identification
against test binaries. EFPR is computed by discounting

misidentifications that do not impact the trace.

Bin File argXtract radare21 ghidra2 Bin File argXtract radare21 ghidra2

ID† #Fns‡ TPR EFPR TPR EFPR TPR EFPR ID† #Fns‡ TPR EFPR TPR EFPR TPR EFPR
0a1 324 100 0.29 95.68 2.19 87.96 0 0d2 841 0 100 69.32 7.4 69.68 2.85
1d7 951 93.27 0.97 74.24 3 73.08 0.82 3b1 204 99.02 0 88.24 0 82.35 0
443 598 100 0 83.78 3.05 83.95 1.95 4d7 1563 95.71 1.17 78.57 3.28 77.8 0.15
589 1486 97.51 0.68 83.24 1.59 84.79 0 5d3 398 99.50 0.73 94.97 0 93.47 0
646 166 98.80 0 80.72 0.73 77.71 0.76 67e 2138 99.16 0.05 82.69 0.54 83.4 0.22
681 1961 97.86 0.56 94.19 0.7 87.51 0.12 6ac 265 98.11 0.37 73.96 0.5 72.08 0
70b 115 95.65 0 67.83 0 73.04 0 7e8 1529 97.58 0.66 81.62 1.57 84.96 0
928 520 95.38 0.93 90.19 0 71.15 0 938 2764 99.57 0.74 85.53 0.59 83.90 0.09
989 762 95.80 9.7* 69.27 8.62 63.10 9.39 ade 1951 99.33 0.89 89.54 0.46 87.69 0.12
bad 839 92.25 0.79 69.85 5.43 68.53 0 be7 2035 99.71 0.39 5.11 87.43 4.72 88
cb5 92 94.57 1.11 61.96 0 67.39 0 cc8 1582 94.82 0.71 82.68 1.91 83 0
dd9 801 96.63 6.9* 95.93 6.36 88.15 6.66 e2a 495 95.15 0.39 89.7 0 69.29 0
e2d 698 96.42 0.35 94.99 0 86.25 0 f2b 1926 99.79 0.65 81.15 1.01 79.85 0.06
f37 1585 95.21 1.16 78.23 3.18 78.36 0 fe9 1007 99.40 0.1 61.27 0.80 56.21 0.70
†ID = First three characters of SHA256 of binary. ‡#Fns = Number of functions. 1radare2 was
executed using aaa analysis mode, 2Ghidra was executed using the ARM Aggressive Instruction

Finder option. Both were provided with the application code base manually.

be considered as the start of a new function. In the former case,
these particular “functions” will never be called during the tracing
phase. In the latter, the functions are directly addressed as if they
are individual functions. Therefore, such FPs will not affect the
trace. We thus consider an “Effective FPR” to denote the false pos-
itives excluding such instances. The EFPRs obtained by argXtract
are fairly similar to those obtained by ghidra (within 1-2% of each
other). radare2 was more likely to result in a higher EFPR; manual
analysis showed that this was often due to radare2 incorrectly
considering push instructions to be the start of a function. Overall,
argXtract resulted in EFPRs of < 1.5% for all but two binaries
(marked with * in the table). These were both compiled by IAR,
which is the only compiler we have observed that uses bl instruc-
tions to branch and link within a function. This accounts for the
higher EFPR for these two binaries. While this will not impact the
actual branching functionality, it will influence the call depth calcu-
lation, which in turn could impact tracing.We observe that radare2
and ghidra also resulted in high EFPRs for these two binaries.

4.3 Function Pattern Matching
Weverified the functionality of the patternmatchingmodule against
the ot::KeyManager::SetKeyRotationOpenThread function, the
mbedtls_ssl_conf_ciphersuites mbedtls library function, and
the CryptoKeyPlaintext_initKey function from Texas Instru-
ments’ SimpleLink Platform. When testing for these functions, we
generated stripped binaries using different vendor SDKs (where rel-
evant), as well as different projects and compilers (Keil, IAR, Clang),
to account for vendor/compiler-introduced variations. argXtract
was able to identify the correct function in each case. To further
check the accuracy of argXtract’s function pattern matching, we
manually verified it against the HAL_Write_ConfigData and aci_-
gap_init functions within a real-world STMicroelectronics binary
by comparing their functionality against the functions within an
unstripped reference binary.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

4.4 Correctness of Results
For correctness checks, we perform tests using generated binaries
with known configurations, as well as verification using a real-
world binary and associated device. We use a subset of ten binaries
from our test set, targeting Nordic and STMicroelectronics chipsets,
compiled using GCC, Keil and IAR, and implementing ANT and
BLE. For the ANT binaries, we define different channel settings and
encryption keys. For Nordic BLE binaries, we define 3 BLE services
- Heart Rate, Device Information and a custom service - with very
specific configurations. Obtained configurations must be an exact
match for the output to be taken as correct. For STMicroelectronics
BLE binaries, we define different advertising addresses and privacy
configurations.6 In our experiments, all of the conditions were satis-
fied for all test binaries within our control set, i.e., the configurations
were extracted exactly as expected. We additionally purchased a
device, the Goji Go Activity Tracker, whose firmware we had ex-
tracted from its companion mobile application. The tracker had
two SIG services, as well as the Nordic firmware update service and
a developer-defined service. Comparing the results obtained using
argXtract with those we obtained from manual analysis (via a
combination of device interaction using the nRF Connect app [56]
and profiling using the ATT-Profiler tool [71]), we found that
argXtract accurately extracted the configuration of the device.

5 CASE STUDY: BLE SECURITY AND
PRIVACY (NORDIC)

BLE is a predominant communications technology within the IoT,
installed on billions of endpoint devices [14]. In this section we
present a case study for the identification of BLE configuration
vulnerabilities in binaries that target Nordic chipsets. The Nordic
BLE stack accepts configuration requests via supervisor calls.

Building the firmware dataset: BLE peripherals typically in-
terface with a mobile application, many of which enable a firmware
upgrade and/or factory reset procedure. The firmware used for this
purpose is either included within the mobile application itself or
is downloaded from a server. The firmware for Nordic chipsets is
identifiable due to its specific structure and included files.

We programmatically extract Nordic BLE binaries from a dataset
of 35,000+ BLE-enabled mobile apps, obtained from Androzoo [1]
and Google Play. We describe here the results obtained by executing
argXtract against 243 unique7 binaries. To additionally check for
the possibility of cloned firmware (which can result in the same
output for slightly different binaries), we use ssdeep [44], with a
threshold of 70% to account for the fact that a lot of the Nordic
baseline codewill be the same across files. Seven clusters are present
within our dataset, with an average of 3 files per cluster. We account
for these, where relevant, when presenting our results.

Execution environment: We executed argXtract on a VM
running Ubuntu 18.04.3 LTSwith 64GB RAM and 10 processor cores,
with 8 parallel processes, taking RAM usage into consideration.

Section outline: The remainder of this section describes our
findings. We first review the (lack of) protection applied to BLE
data across the binaries for the link and application layers (§5.1). We

6Configurations were dependent on the options made available by the vendor.
7Determined by the SHA256 computed over the file bytes.

then analyse instances of weakened pairing due to the use of fixed
passkeys (§5.2). Finally, we examine privacy concerns identified for
our dataset due to the use of static addresses (§5.3) and device/man-
ufacturer names (§5.4). Each subsection provides an overview of the
relevant aspect of the BLE technology, describes the extracted data,
and discusses the results and the security or privacy implications.
The supervisor calls that are targeted are provided in Table 2.

5.1 Security of BLE Data
BLE data is stored in discrete structures known as attributes. Char-
acteristics are a type of attribute that hold the data of interest, e.g.,
heart rate readings. Multiple characteristics are grouped into a
service, which is also a type of attribute. A third type of attribute,
descriptors, describes a characteristic value. Restricting access to
attributes is facilitated via attribute permissions, which are a com-
bination of the following: Access permissions control whether the
attribute can be read and/or written; Authentication/encryption per-
missions indicate whether the link between the two devices must
be authenticated/encrypted before the attribute can be accessed;
Authorisation permissions require developer-specific checks and can
be used to implement end-to-end (i.e., application layer) security.

When link layer protection is required (i.e., via authentication
permissions), three security modes can be applied. We discuss only
Mode 1 in this study as we have not observed Modes 2 and 3 in
real-world devices. The Bluetooth specification defines four levels
of protection for Mode 1: Level 1 - No security; Level 2 - Unauthenti-
cated pairing with encryption, i.e., encryption with no requirement
for Man-in-the-Middle (MitM) protection. This can be achieved
using the Just Works pairing model, which uses an all-zero key
as an input to the key derivation algorithm and requires no user
interaction; Level 3 - Authenticated pairing with encryption, i.e.,
encryption with MitM protection. This requires either the Passkey
Entry or Numeric Comparison pairing models, both of which require
user interaction; Level 4 - Authenticated LE Secure Connections
pairing with encryption using a 128-bit strength key.

Services are freely readable but not writable. Characteristics and
specific descriptors can have authentication and authorisation per-
missions. Characteristics also have certain properties, to determine
how their data can be accessed. For example, a characteristic value
can be read. It can also be obtained via notifications or indications,
by writing to a descriptor called the Client Characteristic Configu-
ration Descriptor (CCCD), whereby the BLE peripheral informs the
connected device of changes in the characteristic value. While the
outcome is somewhat similar (i.e., the connected device obtains the
characteristic value), the security requirements for the two mech-
anisms are different. A read request requires that the connected
device satisfy the read permissions for the characteristic value it-
self, while subscribing to notifications requires that the connected
device satisfy the write permissions of the characteristic’s CCCD.

Extracting characteristic security configurations: We exe-
cuted argXtract against our dataset with a maximum execution
time of 1.5 hours per trace. This returned 199 valid output files.8

8We perform stringent validity checks and consider a characteristic data structure to be
valid only if applicable characteristic permissions (based on characteristic properties)
have correct values, as described by the BLE specification. Further, we reject any
characteristic that cannot be uniquely tied to a service, even if the characteristic
structure is otherwise complete and correct. See Appendix B for more details.

argXtract: Automated Analysis of Stripped IoT Binaries ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Table 2: Calls Of Interest used in case studies.

Case Study Security Metric Calls Of Interest
Nordic BLE Security of BLE Data (§5.1) Characteristic security is defined when the characteristic is added using sd_ble_gatts_characteristic_add. A characteristic

is tied to a service via a service_handle field output by sd_ble_gatts_service_add.
Use of Fixed Passkeys (§5.2) Fixed passkeys are set via the sd_ble_opt_set svc with an opt_id (first argument) of 34.
User Tracking due to Fixed Ad-
dresses (§5.3)

Address type can be changed via sd_ble_gap_address_set (older stacks); sd_ble_gap_addr_set and sd_ble_gap_privacy_-
set (newer versions). Default is random static address set at time of manufacture and unchanging during device lifetime.

Manufacturer/Device Names
and Privacy (§5.4)

Device name is set using sd_ble_gap_device_name_set. Manufacturer Name String is included within the Device Information
Service (obtained in §5.1).

BlueNRG BLE Address Privacy (§6.1.1) Public addresses are configured using aci_hal_write_config_data [77], which internally calls HAL_Write_ConfigData with
same arguments. Validation is performed via the extracted 2nd argument, which is a length field (value must be 6 for addresses).
Privacy is configured via aci_gap_init. The function performs several tasks, most of which require runtime information.
We exploit the fact that the function adds the BLE GAP service to the database when generating our test sets.

BLE Pairing Security (§6.1.2) Two function calls to enable BLE security: (i) aci_gap_set_io_capability, to set the device’s input-output capability, and (ii)
aci_gap_set_authentication_requirement, to set the pairing requirements (such as bonding, MitM protection, etc) [77].
Authorisation permissions are set using the aci_gap_set_authorization_requirement function.

Nordic ANT ANT Channel Security (§6.2.1) ANT is enabled using the sd_ant_enable supervisor call. Within this call, the number of required channels and the number
(out of those created) that should be encrypted are specified.

Analysis times were < 2 minutes for half the binaries, 2-10 min-
utes for 25% of the binaries, and more than 10 minutes for the
remaining binaries. The 199 binaries contained 6 of the previously
mentioned clusters (identified using ssdeep). Examination of the
corresponding output files showed that files within each cluster
had the same service configurations. We therefore consider only
188 unique outputs.

5.1.1 Insufficient protection for BLE data. In this section, we discuss
the protection applied to BLE data for the binaries in our dataset.
Because BLE characteristics can either be defined by the Bluetooth
Special Interest Group (SIG), with SIG-specified security configura-
tions, or defined by the device developer with developer-specified
security, we analyse the two instances separately.

(i) Protection for SIG-defined BLE data argXtract extracted
SIG-defined characteristics from 103 binaries. We found that all
devices follow SIG specifications regarding security configurations.
While most SIG-defined characteristics have no security require-
ments, the results revealed an interesting observation for the SIG-
defined characteristics that do have security requirements. In many
such cases, the SIG specifies a choice of protection levels, normally
Mode 1 Level 2 or Mode 1 Level 3. These can be achieved using
Just Works or Passkey Entry pairing, respectively. While both Just
Works and Passkey Entry are known to be vulnerable to passive
eavesdropping attacks [15], Passkey Entry should be the choice
for greater security, as it provides MitM protection. However, our
results show that device developers have invariably opted for the
lower security level, i.e., Mode 1 Level 2. We believe this may be
due to lack of a user interface on the devices precluding the use of
Passkey Entry. Note that, even if the BLE device does have a user
interface, as long as the data only specifies a security requirement
of Mode 1 Level 2, an attacker can often manipulate the pairing
process by specifying no input-output capabilities, downgrade the
pairing model to Just Works, and thereafter access the data.

(ii) Protection for developer-defined BLE data argXtract ex-
tracted at least one developer-defined characteristic from 170 bi-
naries. Table 3 summarises the link layer and application layer
protection applied to the developer-defined characteristics, broken
down into readable and writable characteristics. From the table,
we conclude that protection for reads is virtually non-existent at

the link layer, with only five firmware binaries specifying Mode 1
Level 2 authentication requirements. Authorisation requirements
are also not prevalent among readable characteristics, with only
seven binaries specifying protection at higher layers. Writable char-
acteristics fare similarly to readable characteristics in terms of link
layer protection, with only four binaries specifying Mode 1 Level 2
authentication requirements. App-layer protection is slightly better
for writable characteristics, but a significant proportion of binaries
apply no protection at all to their writable characteristics (apart
from those provided by Nordic itself, for firmware upgrades).

Security implications: The security of BLE data is strongly
associated with authentication and authorisation permissions. Hav-
ing freely accessible BLE characteristics means any user in the vicinity
of the BLE peripheral will be able to read and write the data, subject
to the characteristic being readable/writable. For that matter, even if
the characteristic is protected by Just Works pairing, an attacker in
the vicinity can pair with the device and access its data. We verified
this with a fitness tracker, from which we were able to access
characteristic values without pairing. Further, even if strong link
layer protection is present, absence of application layer protection
makes the data vulnerable to access by unauthorised apps [70]. We
verified this with a custom Android app and emulated BLE device.

» Implications for readable data within the dataset: Among the bi-
naries that had no protection for readable characteristics, we found
(through the device name extracted in §5.4) numerous fitness track-
ers and healthcare devices, all of which potentially store detailed
information regarding a user’s activity or health. No protection or
only Just Works protection means this personal and sensitive data
is vulnerable to unauthorised access, via local and remote attacks.

» Implications for writable data within the dataset: Within the
binaries that had writable characteristics, we found one that con-
tained the SIG-defined Human Interface Device (HID) service. This
only had Mode 1 Level 2 link layer protection applied to its charac-
teristics. Again, this security requirement can be satisfied by Just
Works pairing, which means that an attacker could transmit unso-
licited messages to the HID device, and also read and modify the
keyboard characters that are transmitted between the HID device
and host via a MitM attack. This has been demonstrated in [43].
We have informed the developer of this vulnerability.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

Table 3: Protection applied to developer-defined data.

Description Reads† Writes
Binaries with characteristics that have appropriate property 167 169
Binaries with Mode 1 Level 2 link layer protection 5 4
Binaries with Mode 1 Level 3 link layer protection 0 0
Binaries with application layer security 7 69*

All entries refer to developer-defined characteristics. †Including notifications/indications. *24
excluding Nordic DFU control point, from Nordic DFU library.

The vast majority of devices applied no protection to any of their
writable characteristics. Among these were smart switches, medical
respiratory devices and ECG monitors. Writing random bytes to
characteristics on such devices could cause the devices to function
improperly or cease to function entirely. If the behaviour of the
device corresponding to the written values is known to an attacker,
then they can write carefully chosen values in order to modify the
expected behaviour, possibly with harmful consequences.

5.1.2 Different permissions for read vs. notify. Asmentioned in §5.1,
the value held within a characteristic can be accessed in different
ways, either using a direct read request or via notifications/indica-
tions, and even though the mechanisms of access differ, the ultimate
outcome is similar. Our results indicated that one binary within our
dataset contained characteristics that had both read and notify
properties, but with different security properties set for the two
types of access. Mode 1 Level 2 security was required to be able
to read the characteristics’ values, while the values could be freely
accessed via notifications (their CCCDs were writable without the
need for any pairing or higher-layer protection).

Security implications: Different security levels for different
value acquisition methods implies that the data can always be ac-
cessed using the less secure mechanism. In addition, there may be a
false sense of security, as the protection will be assumed to be higher
than it actually is. This shows that developers may unintentionally
leave “gaps” in security, particularly when incorporating different
functionalities. We have informed the developer about this issue.

5.2 Use of Fixed Passkeys
As mentioned in §5.1, Passkey Entry is a BLE pairing model which
provides MitM protection by requiring that a user manually key in a
passkey that is displayed on the BLE peripheral. However, some de-
velopers program a fixed passkey into the peripheral. This might be
because many BLE peripherals don’t have input/output capabilities
(i.e., keypad or display), but could also originate from bad practices
when programming devices that do have these capabilities.

Identifyingfixedpasskeys: argXtract identified a smartwatch
binary within the dataset that called sd_ble_opt_set with an
opt_id of 34, setting a fixed passkey of 0x303030303030, i.e. “000000”.

Security implications: Fixed passkeys undermine the security
of the Passkey Entry model, particularly if the same passkey is used
for all devices of a certain brand. In such a scenario, an attacker
would only need to know the passkey for one device in order to
be able to covertly connect to any device of the same brand. This
effectively removes the MitM protection afforded by the Passkey Entry
model. With the binary we identified, a fixed passkey of “000000”
equates Passkey Entry to the Just Works model.

Table 4: Address types used in BLE peripherals.

Address Type #Bins Address Type #Bins Address Type #Bins
Public 29 Private nonresolvable 1 Unknown 4
Random static 208 Private resolvable 1

5.3 User Tracking due to Fixed Addresses
BLE peripherals periodically transmitmessages on advertising chan-
nels in order to enable incoming connections. These messages con-
tain the peripheral’s hardware address and could be used to track
the device. To overcome this, the BLE specification defines resolvable
private addresses, which enable a device to change its advertising
address while still allowing for reconnections from bonded peers.

There are in fact four types of addresses that can be used with
BLE: Public, Random Static, Private Resolvable, and Private Non-
resolvable. Public addresses do not change during the lifetime of
a device; Random Static addresses do not change during a single
power cycle and may not change for the lifetime of the device;
Private Resolvable addresses change periodically in such a way as
to enable reconnections by a bonded peer; Private Non-resolvable
addresses change periodically, but do not allow for reconnections.

Extracting advertising address type: argXtract identified
that 35 out of the 243 firmware files included one of the svc numbers
for performing address type selection/setting, which meant that
the remaining 208 files used the default setting of a random static
address. Table 4 depicts a breakdown of the address types used
within the BLE peripherals in our dataset. Out of the 243 binaries in
our dataset, only a single binary used resolvable private addresses.
The device name (obtained in §5.4) revealed that the binary was for
a personal protection device. One binary within the dataset used
non-resolvable addresses, which means it will not be vulnerable to
tracking but will also not be able to form bonds with other devices.
Its device name did not reveal its functionality. We found that
overall, the results indicated that at least 95% of the BLE binaries
use static (random or public) addresses.

Privacy implications: Because BLE peripherals tend to adver-
tise constantly when not in a connection, the use of public or random
static addresses in advertising messages opens the BLE device, and by
extension (depending on the device) its owner, to tracking. In crowded
locations such as shopping centres, repeated visits by a user can be
covertly tracked simply by monitoring BLE advertisements and log-
ging the device addresses. This has been previously demonstrated
in [27]. It has also been shown to be feasible to set up a botnet
to track users across a range of locations [40]. These attacks are
particularly relevant in the case of devices such as wearables, which
are generally always on the user’s person. We found that all of the
wearable binaries within our dataset used public or fixed random
static addresses.

5.4 Manufacturer/Device Names and Privacy
BLE advertising messages usually contain the peripheral’s name,
which is often used by users to identify a device from (potentially) a
number of other BLE devices that are also advertising in the vicinity.
Peripherals may also include a Manufacturer Name String, which
is normally obtained by sending a scan request. These advertising
messages require no authentication in order to be read.

argXtract: Automated Analysis of Stripped IoT Binaries ACSAC ’21, December 6–10, 2021, Virtual Event, USA

Extracting device and manufacturer names: argXtract ex-
tracted non-null values for device/manufacturer name from 156
binaries. An analysis of the names revealed that our dataset con-
tained firmware from a variety of BLE devices, including fitness
trackers, beacons, electric switch controls, parking aids, security
devices, personal protection devices, medical equipment and be-
havioural monitoring devices.

Privacy implications: Device names can reveal a lot about the
nature of the device. This is particularly concerning when the de-
vice is related to a user’s health, or is of an otherwise private nature.
Because no active connections are required to read advertising data,
an attacker would simply need to monitor the BLE advertising chan-
nels and perhaps send a scan request for additional information. By
continuously scanning BLE advertisements, extracting the device
and manufacturer name, and combining this information with the
Received Signal Strength Indicator (RSSI), along with user observa-
tion, an attacker may be able to determine which devices belong
to which users in the vicinity. This could defeat private addresses
(§5.3), as an attacker might instead be able to use the device name,
along with other advertising data, to track the device [12, 19, 31].
Further, if a particular device has known issues (such as those iden-
tified in this work), then the attacker can take advantage of the
device name to identify exploitable devices.

6 APPLICABILITY STUDIES
In this section, we apply argXtract to two smaller datasets, repre-
senting non-BLE technologies and non-svc-based stacks. In §6.1,
we present a case study for the identification of BLE configuration
vulnerabilities in firmware that targets STMicroelectronics chipsets,
specifically the BlueNRG processor. Configurations for BlueNRG
are performed via function calls. We therefore employ the function
pattern matching module of argXtract (described in §3.4.2). In
§6.2, we present a case study for the identification of vulnerabilities
within binaries targeting Nordic Semiconductor chipsets and im-
plementing the ANT technology stack. All relevant function calls
and svcs are provided in Table 2.

6.1 Case Study: BLE Security and Privacy via
Function Pattern Matching (BlueNRG)

Wemanually analysed 500 real-world .bin files extracted from APKs
and found that two were STMicroelectronics BlueNRG binaries.
argXtract identified that both had an application code base of
0x10051000, which corresponds to BlueNRG-1 v2.1+ [76].

6.1.1 BLE Address Privacy. In this section, we describe tests to
identify the use of private addresses within BlueNRG binaries.

Extracting address configurations: argXtract revealed that
one of the real-world binaries contained a public address derived
from BlueNRG code samples. This, along with the binary’s name,
led us to conclude that the binary was for demonstration purposes.
The second binary was a BLE-enabled cyclist safety aid. It did not
have privacy enabled.

Privacy implications: A cyclist safety aid is likely to be about
the user’s person whenever they are cycling. A fixed address ema-
nating from the device at all times enables the user to be tracked
over time, as discussed in §5.3.

6.1.2 BLE Pairing Security. With BlueNRG binaries, if a BLE char-
acteristic has authentication requirements, then specific config-
urations must be performed to enable pairing. We exploit two
pairing-related functions in our tests. We additionally check for
authorisation requirements.

Extracting pairing configurations: Focusing on the cyclist
safety aid, argXtract found that the binary had no calls either to
aci_gap_set_io_capability or to aci_gap_set_authorisation_-
requirement. This means that BLE security was not enabled.

Security implications: A lack of security in a cyclist safety
aid means that an attacker could connect to the device and send
commands to it without the need for any authentication. This could
have serious consequences for the cyclist’s safety.We have informed
the developer regarding the identified issues.

6.2 Case study: ANT Security (Nordic)
To acquire Nordic ANT binaries, we follow the same procedure as
for Nordic BLE (see §5), but focus on a different set of svc numbers.
We obtained 9 ANT binaries from APKs.

6.2.1 ANT Channel security. ANT communications are channel-
based, with a channel connecting two or more nodes together. Some
ANT devices can have multiple channels. To secure the channels at
the network layer, ANT supports 8-byte network keys and 128-bit
AES encryption [34].

Extracting channel security configurations: argXtract ex-
tracted channel configuration parameters from 9 real-world ANT
binaries, corresponding to 7 indoor exercise bikes, an analytical
bike light (i.e., a bike light with additional sensors), and a heart
rate monitor. Three binaries defined a single ANT channel, four
defined 2 channels and two defined 4 channels. None of the binaries
specified encryption for any of their ANT channels.

Security implications: As with the findings discussed in §5.1
for BLE, in ANT too data will be vulnerable to unauthorised access
if channel security is not enabled. One of the binaries that was
tested was a heart rate monitor, which means that a user’s heart
rate measurements (i.e., health indicators) are vulnerable.

7 LIMITATIONS AND FUTUREWORK
In this section, we discuss some limitations of argXtract, which
could provide potential for future work.

Edge cases: argXtract is able to analyse most Cortex-M bina-
ries. However, as seen in one example in §4, there are edge cases
where the .text segment is split into subsections, with different
address offsets for each subsection, where argXtract is unable to
obtain individual code bases and accurate function estimates. This
improvement is left as future work.

Function identification: With function boundary identifica-
tion, argXtract assumes that the instructions belonging to a func-
tion are laid out in a contiguous range. If a function is split up into
disjoint blocks of instructions, then argXtract may identify each
such block as a separate function.

COI and callsite identification: As mentioned in §3.4, the
function pattern matching performed by argXtract uses manually-
defined test sets, when function outputs or artefacts are distinguish-
able. If two functions produce the same output for the same input

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

and one is not nested within the other, then a single function cannot
be matched. Further, the function pattern matching process can take
several hours when a binary contains a large number of functions.
An ideal alternative would be automated function pattern match-
ing, without executing function code. The most popular method to
achieve this at present is via machine learning techniques. How-
ever, this requires a sufficiently large annotated training set for
each function of interest, which is not yet available for the types
of vendor-specific configuration functions that are of interest here.
With callsite identification, direct calls are identified. However, calls
via blx are not. (Note that blxwill be identified and handled during
tracing, but not for COI identification.)

8 RELATEDWORK
In this section, we discuss previous works related to firmware
analysis and IoT security. While it may seem like most aspects of
firmware analysis have already been covered, most existing works
focus on Linux-based systems [60]. We reiterate that the analysis of
stripped binaries targeting non-traditional operating systems and
the ARM Thumb instruction set, which is increasingly favoured by
IoT peripherals, has still not been explored sufficiently.

Analysis of stripped binaries: The analysis of stripped bina-
ries, particularly function block identification, has been the sub-
ject of widespread study. Control flow analysis has been used
in [4, 36, 59, 61, 65] to determine functions in PE, ELF, COFF and
XCOFF binaries, and a QEMU+LLVM approach for function bound-
ary identification was presented in [29]. These approaches may not
be suited to ARM IoT analysis due to errors introduced by inline
data and compiler-introduced constructs such as Thumb switch-
case conditions. Machine learning (ML) has also been proposed
for identifying function entry points [11, 66, 68], but this approach
requires a sufficiently large labelled training set, which is currently
not available for IoT peripheral binaries. A semantics-based ap-
proach was used in Jima [3] for ELF x86/x86-64, which employs
techniques for computing jump tables that are similar to those used
in argXtract for computing table branch addresses. To the best of
our knowledge, we are the first to employ the techniques we have
described in this work for identifying the application code base,9
the .data segment, as well as several sources of inline data. The
inline data identification employed by argXtract also improves
the performance of function identification (as we have shown in
§4) and subsequent tracing.

Functionmatching and labelling: One approach for function
pattern matching is to compute statistical similarities between in-
struction sequences of functions [46, 54], but this may suffer poor
performance due to compiler-introduced variations and optimi-
sations [17]. Dynamic similarity testing via function execution
was employed in [30]. While this is in some ways similar to our
approach, argXtract looks for functional equivalence based on
known function behaviour, while [30] considers function similar-
ity based on random executions. Most current approaches favour
ML techniques [49, 58, 68, 89] but, as mentioned previously, this
requires large training sets.

9Similar to our approach, Wen et al. [87] also use vector table entries as one input to
compute the application code base, but without considering default handlers as we do.

Security analysis and patching of IoTfirmware: Large-scale
security analyses of embedded firmware files, predominantly Linux
and VxWorks-based, were presented in [24, 25]. FIE [28], built from
the KLEE symbolic execution engine, identifies vulnerabilities in
embedded MSP430 firmware. Firmalice [69] detects authentication
bypass vulnerabilities within the firmware of Linux and VxWorks-
based binaries. FirmFuzz [73] specifically targets IoT firmware and
is intended for security analysis. It uses QEMU and targets un-
stripped Linux-based binaries. These works analyse binaries that
target at least pared-down versions of fully-fledged operating sys-
tems. They would not be suitable for analysing stripped firmware of
embedded devices that do not have a proper OS. InternalBlue [48]
enables testing and patching of Broadcom Bluetooth firmware,
while LightBlue [88] analyses and performs debloating of unneeded
Bluetooth profiles and HCI commands within firmware to reduce
the potential attack surface. The randomness of RNGs used in Blue-
tooth chipsets was measured via firmware analysis in [82].

BLE configuration security analysis:On the BLE front, previ-
ous works have explored the security and privacy configurations of
BLE peripherals by analysing devices [6, 27, 72, 84], and mobile ap-
plications [70, 94]. However, device analysis is expensive and may
not directly provide indications about higher-layer security, while
mobile applications do not provide insights about low-level pairing
mechanisms. Multi-faceted analysis of BLE fitness trackers, in terms
of configuration and behaviour, was performed in [23, 26, 39].

Independently to us, Wen et al. [87] developed a tool named
FirmXRay that identifies BLE link layer configuration vulnerabil-
ities by targeting supervisor calls on Nordic and ICalls on Texas
Instruments BLE binaries. To compare argXtract and FirmXRay,
we executed them against a random subset of 300+ binaries from
the FirmXRay dataset. We found that a direct comparison was not
possible due to insufficient information within FirmXRay’s output
data structures (further details provided in Appendix C). In general,
while FirmXRay is geared towards BLE vulnerabilities, our work is
capable of handling generic analysis of any technology that targets
ARM Cortex-M binaries. Further, FirmXRay only handles supervi-
sor calls and ICalls, whereas argXtract performs function pattern
matching to identify any function (provided the requisite artefacts
can be identified within memory/registers). The template-based
approach used in our framework also enables easy addition of new
test functions. Within the BLE analysis, Wen et al. [87] have con-
fined the discussion to link layer vulnerabilities, while we discuss
application layer issues as well.

9 CONCLUSION
In this work, we present argXtract, a framework for performing
partial-knowledge automated analyses of stripped IoT binaries,
to extract security-relevant configuration information from ARM
Cortex-M firmware. argXtract overcomes the challenges inherent
to the analysis of stripped Cortex-M binaries and enables bulk
processing of IoT peripheral firmware files. We use argXtract
to extract configurations from three datasets: Nordic Bluetooth
Low Energy (BLE) binaries, STMicroelectronics BlueNRG binaries,
and Nordic ANT binaries. Our results reveal widespread lack of
protection for data, inconsistent data access controls and serious
privacy vulnerabilities.

argXtract: Automated Analysis of Stripped IoT Binaries ACSAC ’21, December 6–10, 2021, Virtual Event, USA

ACKNOWLEDGMENTS
This research has been partially sponsored by the Engineering and
Physical Sciences Research Council (EPSRC) and the UK govern-
ment as part of the Centre for Doctoral Training in Cyber Security
at Royal Holloway, University of London (EP/P009301/1).

REFERENCES
[1] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016.

Androzoo: Collecting Millions of Android Apps for the Research Community. In
Proceedings of the 13th International Conference on Mining Software Repositories.
ACM, 468–471.

[2] Sergi Alvarez. 2021. radare2. https://github.com/radareorg/radare2.
[3] Jim Alves-Foss and Jia Song. 2019. Function boundary detection in stripped

binaries. In Proceedings of the 35th Annual Computer Security Applications
Conference. 84–96.

[4] Dennis Andriesse, Asia Slowinska, and Herbert Bos. 2017. Compiler-agnostic
function detection in binaries. In 2017 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 177–189.

[5] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the Mirai botnet. In 26th USENIX security
symposium (USENIX Security 17). 1093–1110.

[6] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Rasmussen. 2020. Key
Negotiation Downgrade Attacks on Bluetooth and Bluetooth Low Energy. ACM
Trans. Priv. Secur. 23, 3, Article 14 (June 2020).

[7] ARM. 2012. Supervisor calls. Available:
https://developer.arm.com/documentation/dui0471/g/handling-processor-
exceptions/supervisor-calls [Accessed: 28 July 2020].

[8] ARM. 2016. Calling SVCs from an application. Available:
https://developer.arm.com/documentation/dui0471/m/handling-processor-
exceptions/calling-svcs-from-an-application [Accessed: 28 July 2020].

[9] Arm. 2020. Record shipments of Arm-based chips in previous quarter. Available:
https://www.arm.com/company/news/2020/02/record-shipments-of-arm-
based-chips-in-previous-quarter [Accessed: 28 June 2020].

[10] ARM. 2021. Vector table. Available:
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-
processor/exception-model/vector-table [Accessed: 03 July 2020].

[11] Tiffany Bao, Jonathan Burket, Maverick Woo, Rafael Turner, and David Brumley.
2014. BYTEWEIGHT: Learning to recognize functions in binary code. In 23rd
USENIX Security Symposium (USENIX Security 14). 845–860.

[12] Johannes K Becker, David Li, and David Starobinski. 2019. Tracking anonymized
Bluetooth devices. Proceedings on Privacy Enhancing Technologies (2019), 50–65.

[13] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[14] Bluetooth Special Interest Group. 2019. 2019 Bluetooth Market Update.
Available: https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-
market-update [Accessed 01-Feb-2021].

[15] Bluetooth Special Interest Group. 2019. Bluetooth Core Specification v5.2.
[16] Bluetooth Special Interest Group. 2019. Intro to Bluetooth Low Energy.

Available: https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-
low-energy/ [Accessed: 27 July 2020].

[17] Martial Bourquin, Andy King, and Edward Robbins. 2013. Binslayer: accurate
comparison of binary executables. In Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop. 1–10.

[18] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. 2011.
BAP: A binary analysis platform. In International Conference on Computer Aided
Verification. Springer, 463–469.

[19] Guillaume Celosia and Mathieu Cunche. 2019. Saving private addresses: an
analysis of privacy issues in the bluetooth-low-energy advertising mechanism.
In Proceedings of the 16th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services. 444–453.

[20] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele. 2016.
Towards Automated Dynamic Analysis for Linux-based Embedded Firmware. In
NDSS, Vol. 16. 1–16.

[21] Jiongyi Chen, Wenrui Diao, Qingchuan Zhao, Chaoshun Zuo, Zhiqiang Lin,
XiaoFeng Wang, Wing Cheong Lau, Menghan Sun, Ronghai Yang, and Kehuan
Zhang. 2018. IoTFuzzer: Discovering Memory Corruptions in IoT Through
App-based Fuzzing.. In NDSS.

[22] Richard Chirgwin. 2016. Finns chilling as DDoS knocks out building control
system. Available: https://www.theregister.com/2016/11/09/finns_chilling_as_
ddos_knocks_out_building_control_system. [Accessed: 11 June 2020].

[23] Jiska Classen, Daniel Wegemer, Paul Patras, Tom Spink, and Matthias Hollick.
2018. Anatomy of a vulnerable fitness tracking system: Dissecting the Fitbit
cloud, app, and firmware. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 2, 1 (2018), 1–24.

[24] Andrei Costin, Jonas Zaddach, Aurélien Francillon, and Davide Balzarotti. 2014.
A large-scale analysis of the security of embedded firmwares. In 23rd USENIX
Security Symposium (USENIX Security 14). 95–110.

[25] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. 2016. Automated
dynamic firmware analysis at scale: a case study on embedded web interfaces. In
Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security. 437–448.

[26] Britt Cyr, Webb Horn, Daniela Miao, and Michael Specter. 2014. Security
Analysis of Wearable Fitness Devices (Fitbit). Massachusetts Institute of
Technology (2014).

[27] Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Prasant Mohapatra. 2016.
Uncovering privacy leakage in BLE network traffic of wearable fitness trackers.
In Proceedings of the 17th International Workshop on Mobile Computing Systems
and Applications. 99–104.

[28] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh Jha. 2013.
FIE on firmware: Finding vulnerabilities in embedded systems using symbolic
execution. In 22nd USENIX Security Symposium (USENIX Security 13). 463–478.

[29] Alessandro Di Federico, Mathias Payer, and Giovanni Agosta. [n. d.]. rev. ng: a
unified binary analysis framework to recover CFGs and function boundaries. In
Proceedings of the 26th International Conference on Compiler Construction.

[30] Manuel Egele, Maverick Woo, Peter Chapman, and David Brumley. 2014. Blanket
execution: Dynamic similarity testing for program binaries and components. In
23rd {USENIX} Security Symposium ({USENIX} Security 14). 303–317.

[31] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. 2016. Protecting privacy of
{BLE} device users. In 25th {USENIX} Security Symposium ({USENIX} Security
16). 1205–1221.

[32] Jan Friebertshäuser, Florian Kosterhon, Jiska Classen, and Matthias Hollick. 2020.
Polypyus–The Firmware Historian.

[33] Garmin Canada Inc. 2020. What is ANT+. Available:
https://www.thisisant.com/consumer/ant-101/what-is-ant [Accessed: 27 July
2020].

[34] Garmin Canada Inc. 2020. What kind of security does ANT provide? Available:
https://www.thisisant.com/developer/resources/tech-faq/what-kind-of-
security-does-ant-provide-1 [Accessed: 07 Dec 2020].

[35] Liam Goudge and Simon Segars. 1996. Thumb: reducing the cost of 32-bit RISC
performance in portable and consumer applications. In COMPCON’96.
Technologies for the Information Superhighway Digest of Papers. IEEE, 176–181.

[36] Laune C Harris and Barton P Miller. 2005. Practical analysis of stripped binary
code. ACM SIGARCH Computer Architecture News 33, 5 (2005), 63–68.

[37] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Raychev, and Martin Vechev.
[n. d.]. Debin: Predicting debug information in stripped binaries. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.

[38] Hex-Rays. 2021. IDA pro disassembler. Available:
https://www.hex-rays.com/products/ida/support/download_freeware/.
[Accessed: 31 Jan 2021].

[39] Andrew Hilts, Christopher Parsons, and Jeffrey Knockel. 2016. Every Step You
Fake: A Comparative Analysis of Fitness Tracker Privacy and Security. (2016).

[40] Taher Issoufaly and Pierre Ugo Tournoux. 2017. BLEB: Bluetooth Low Energy
Botnet for large scale individual tracking. In 2017 1st International Conference on
Next Generation Computing Applications (NextComp). IEEE, 115–120.

[41] Muhui Jiang, Yajin Zhou, Xiapu Luo, Ruoyu Wang, Yang Liu, and Kui Ren. 2020.
An Empirical Study on ARM Disassembly Tools. In Proceedings of the 29th ACM
SIGSOFT International Symposium on Software Testing and Analysis (Virtual
Event, USA) (ISSTA 2020). Association for Computing Machinery, New York, NY,
USA, 401–414. https://doi.org/10.1145/3395363.3397377

[42] Anastasis Keliris and Michail Maniatakos. 2018. ICSREF: A framework for
automated reverse engineering of industrial control systems binaries. arXiv
preprint arXiv:1812.03478 (2018).

[43] Gerhard Klostermeier and Matthias Deeg. 2018. Case Study: Security of Modern
Bluetooth Keyboards. (2018). Available:
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_
Modern_Bluetooth_Keyboards.pdf [Accessed: 30 Nov 2020].

[44] Jesse Kornblum, Helmut Grohne, and Tsukasa OI. 2021. ssdeep - Fuzzy hashing
program. Available: https://ssdeep-project.github.io/ssdeep/index.html
[Accessed 16-Mar-2021].

[45] Selena Larson. 2017. FDA confirms that St. Jude’s cardiac devices can be hacked.
Available:
https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-hack.
[Accessed: 11 June 2020].

[46] Yeo Reum Lee, BooJoong Kang, and Eul Gyu Im. 2013. Function matching-based
binary-level software similarity calculation. In Proceedings of the 2013 Research
in Adaptive and Convergent Systems. 322–327.

[47] Franco Loi, Arunan Sivanathan, Hassan Habibi Gharakheili, Adam Radford, and
Vijay Sivaraman. 2017. Systematically evaluating security and privacy for
consumer IoT devices. In Proceedings of the 2017 Workshop on Internet of Things
Security and Privacy. 1–6.

[48] Dennis Mantz, Jiska Classen, Matthias Schulz, and Matthias Hollick. 2019.
InternalBlue-Bluetooth binary patching and experimentation framework. In

https://github.com/radareorg/radare2
https://developer.arm.com/documentation/dui0471/g/handling-processor-exceptions/supervisor-calls
https://developer.arm.com/documentation/dui0471/g/handling-processor-exceptions/supervisor-calls
https://developer.arm.com/documentation/dui0471/m/handling-processor-exceptions/calling-svcs-from-an-application
https://developer.arm.com/documentation/dui0471/m/handling-processor-exceptions/calling-svcs-from-an-application
https://www.arm.com/company/news/2020/02/record-shipments-of-arm-based-chips-in-previous-quarter
https://www.arm.com/company/news/2020/02/record-shipments-of-arm-based-chips-in-previous-quarter
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/exception-model/vector-table
https://developer.arm.com/documentation/dui0552/a/the-cortex-m3-processor/exception-model/vector-table
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update
https://www.bluetooth.com/bluetooth-resources/2019-bluetooth-market-update
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-low-energy/
https://www.bluetooth.com/bluetooth-resources/intro-to-bluetooth-low-energy/
https://www.theregister.com/2016/11/09/finns_chilling_as_ddos_knocks_out_building_control_system
https://www.theregister.com/2016/11/09/finns_chilling_as_ddos_knocks_out_building_control_system
https://www.thisisant.com/consumer/ant-101/what-is-ant
https://www.thisisant.com/developer/resources/tech-faq/what-kind-of-security-does-ant-provide-1
https://www.thisisant.com/developer/resources/tech-faq/what-kind-of-security-does-ant-provide-1
https://www.hex-rays.com/products/ida/support/download_freeware/
https://doi.org/10.1145/3395363.3397377
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_Modern_Bluetooth_Keyboards.pdf
https://www.syss.de/fileadmin/dokumente/Publikationen/2018/Security_of_Modern_Bluetooth_Keyboards.pdf
https://ssdeep-project.github.io/ssdeep/index.html
https://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-hack

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

Proceedings of the 17th Annual International Conference on Mobile Systems,
Applications, and Services. 79–90.

[49] Luca Massarelli, Giuseppe Antonio Di Luna, Fabio Petroni, Roberto Baldoni, and
Leonardo Querzoni. 2019. Safe: Self-attentive function embeddings for binary
similarity. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 309–329.

[50] Sanjay M Mishra. 2015. Wearable Android: Android Wear and Google Fit app
development. John Wiley & Sons.

[51] Mitre. 2015. CVE-2015-2880. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2880 [Accessed: 14
July 2020].

[52] Mitre. 2018. CVE-2018-10825. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10825 [Accessed: 14
July 2020].

[53] Mitre. 2019. CVE-2019-16518. Available:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16518 [Accessed: 14
July 2020].

[54] Ginger Myles and Christian Collberg. 2005. K-gram based software birthmarks.
In Proceedings of the 2005 ACM symposium on Applied computing. 314–318.

[55] National Security Agency. 2020. Ghidra.
https://github.com/NationalSecurityAgency/ghidra.

[56] Nordic Semiconductor. 2020. nRF Connect for Mobile.
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-
Connect-for-mobile.

[57] Nordic Semiconductor ASA. 2020. SoftDevices. Available:
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_gsg_ses%2FUG%
2Fgsg%2Fsoftdevices.html [Accessed: 03 July 2020].

[58] James Patrick-Evans, Lorenzo Cavallaro, and Johannes Kinder. 2020.
Probabilistic Naming of Functions in Stripped Binaries. In Annual Computer
Security Applications Conference. 373–385.

[59] Manish Prasad and Tzi-cker Chiueh. 2003. A Binary Rewriting Defense Against
Stack based Buffer Overflow Attacks.. In USENIX Annual Technical Conference,
General Track. 211–224.

[60] Abdullah Qasem, Paria Shirani, Mourad Debbabi, Lingyu Wang, Bernard Lebel,
and Basile L Agba. 2021. Automatic Vulnerability Detection in Embedded
Devices and Firmware: Survey and Layered Taxonomies. ACM Computing
Surveys (CSUR) 54, 2 (2021), 1–42.

[61] Rui Qiao and R Sekar. [n. d.]. Function interface analysis: A principled approach
for function recognition in COTS binaries. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).

[62] Nguyen Anh Quynh. 2020. Capstone: The Ultimate Disassembler.
https://www.capstone-engine.org.

[63] Nguyen Anh Quynh. 2020. Unicorn The Ultimate CPU emulator. Available:
https://www.unicorn-engine.org [Accessed:25 Oct 2020].

[64] Radware. 2006. ‘BrickerBot’ Results In PDoS Attack. Available:
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-
permanent-denial-of-service/. [Accessed: 11 June 2020].

[65] Giridhar Ravipati, Andrew R Bernat, Nate Rosenblum, Barton P Miller, and
Jeffrey K Hollingsworth. 2007. Toward the deconstruction of Dyninst. Univ. of
Wisconsin, technical report (2007), 32.

[66] Nathan E Rosenblum, Xiaojin Zhu, Barton P Miller, and Karen Hunt. 2008.
Learning to Analyze Binary Computer Code.. In AAAI. 798–804.

[67] Vinay Sachidananda, Suhas Bhairav, and Yuval Elovici. 2019. Spill the Beans:
Extrospection of Internet of Things by Exploiting Denial of Service. EAI
Endorsed Transactions on Security and Safety 6, 20 (2019).

[68] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi. 2015. Recognizing
functions in binaries with neural networks. In 24th USENIX Security Symposium
(USENIX Security 15). 611–626.

[69] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and
Giovanni Vigna. 2015. Firmalice-automatic detection of authentication bypass
vulnerabilities in binary firmware.. In NDSS.

[70] Pallavi Sivakumaran and Jorge Blasco. 2019. A Study of the Feasibility of
Co-located App Attacks against BLE and a Large-Scale Analysis of the Current
Application-Layer Security Landscape. In 28th USENIX Security Symposium
(USENIX Security 19). 1–18.

[71] Pallavi Sivakumaran and Jorge Blasco Alis. 2017. ATT Profiler.
https://github.com/projectbtle/att-profiler.

[72] Pallavi Sivakumaran and Jorge Blasco Alis. 2018. A Low Energy Profile:
Analysing Characteristic Security on BLE Peripherals. In Proceedings of the
Eighth ACM Conference on Data and Application Security and Privacy. 152–154.

[73] Prashast Srivastava, Hui Peng, Jiahao Li, Hamed Okhravi, Howard Shrobe, and
Mathias Payer. 2019. FirmFuzz: automated IoT firmware introspection and
analysis. In Proceedings of the 2nd International ACM Workshop on Security and
Privacy for the Internet-of-Things. 15–21.

[74] Mark Stanislav and Tod Beardsley. 2015. Hacking IoT: A Case Study on Baby
Monitor Exposures and Vulnerabilities. Available:
https://www.rapid7.com/globalassets/external/docs/Hacking-IoT-A-Case-
Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf. [Accessed: 11 June

2020].
[75] Statista Research Department. 2019. IoT connected devices worldwide 2030.

Available: https://www.statista.com/statistics/802690/worldwide-connected-
devices-by-access-technology/. [Accessed: 29 June 2020].

[76] STMicroelectronics. 2018. AN4869: The BlueNRG-1, BlueNRG-2 BLE OTA
(over-the-air) firmware upgrade.

[77] STMicroelectronics. 2019. PM0257: BlueNRG-1, BlueNRG-2 BLE stack v2.x
programming guidelines.

[78] Texas Instruments. 2020. Bluetooth Low Energy software stack. Available:
https://www.ti.com/tool/BLE-STACK [Accessed: 02 July 2020].

[79] Texas Instruments. 2020. A fully compliant Zigbee 3.x solution: Z-Stack.
Available: https://www.ti.com/tool/Z-STACK [Accessed: 02 July 2020].

[80] Iain Thomson. 2016. Wi-Fi baby heart monitor may have the worst IoT security
of 2016. Available: https:
//www.theregister.com/2016/10/13/possibly_worst_iot_security_failure_yet.
[Accessed: 11 June 2020].

[81] Thread Group. 2019. What is Thread. Available:
https://www.threadgroup.org/what-Is-thread [Accessed: 27 July 2020].

[82] Jörn Tillmanns, Jiska Classen, Felix Rohrbach, and Matthias Hollick. 2020.
Firmware Insider: Bluetooth Randomness is Mostly Random. In 14th {USENIX}
Workshop on Offensive Technologies ({WOOT} 20).

[83] Fish Wang and Yan Shoshitaishvili. 2017. Angr-the next generation of binary
analysis. In 2017 IEEE Cybersecurity Development (SecDev). IEEE, 8–9.

[84] Jiliang Wang, Feng Hu, Ye Zhou, Yunhao Liu, Hanyi Zhang, and Zhe Liu. 2020.
BlueDoor: breaking the secure information flow via BLE vulnerability. In
Proceedings of the 18th International Conference on Mobile Systems, Applications,
and Services. 286–298.

[85] KC Wang. 2017. Embedded real-time operating systems. In Embedded and
Real-Time Operating Systems. Springer, 401–475.

[86] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. [n. d.].
Looking from the mirror: evaluating IoT device security through mobile
companion apps. In 28th USENIX Security Symposium (USENIX Security 19).

[87] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2020. FirmXRay: Detecting
Bluetooth Link Layer Vulnerabilities From Bare-Metal Firmware. (2020).

[88] Jianliang Wu, Ruoyu Wu, Daniele Antonioli, Mathias Payer, Nils Ole
Tippenhauer, Dongyan Xu, Dave Jing Tian, and Antonio Bianchi. 2021.
LIGHTBLUE: Automatic Profile-Aware Debloating of Bluetooth Stacks. In
Proceedings of the USENIX Security Symposium (USENIX Security).

[89] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural network-based graph embedding for cross-platform binary code
similarity detection. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 363–376.

[90] Xiaokang Yin, Shengli Liu, Long Liu, and Da Xiao. 2018. Function recognition in
stripped binary of embedded devices. IEEE Access 6 (2018), 75682–75694.

[91] Kim Zetter. 2015. Hackers Can Seize Control of Electric Skateboards and Toss
Riders. Available: https://www.wired.com/2015/08/hackers-can-seize-control-
of-electric-skateboards-and-toss-riders-boosted-revo/ [Accessed: 27 July 2020].

[92] Wei Zhou, Yan Jia, Yao Yao, Lipeng Zhu, Le Guan, Yuhang Mao, Peng Liu, and
Yuqing Zhang. 2019. Discovering and Understanding the Security Hazards in the
Interactions between IoT Devices, Mobile Apps, and Clouds on Smart Home
Platforms. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1133–1150.

[93] Zigbee Alliance. 2019. What is Zigbee? Available:
https://Zigbeealliance.org/solution/Zigbee/ [Accessed: 27 July 2020].

[94] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2019.
Automatic fingerprinting of vulnerable BLE IoT devices with static uuids from
mobile apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 1469–1483.

A ANALYSIS OF POTENTIAL INFORMATION
SOURCES FOR IOT VULNERABILITIES

There are several possible sources for obtaining information regard-
ing the configurations of IoT devices. These include the devices
themselves, the firmware they run, or any application or website
they interface with. We analyse the merits and shortcomings of
each of these potential sources below:

Devices: Several security and privacy analyses have been con-
ducted against IoT devices [27, 47, 67, 72]. Interfacing with physical
devices can reveal behavioural characteristics, particularly those
where user interaction is required. Combining hardware device
tests with an analysis of communication interfaces can yield even

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2880
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-10825
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-16518
https://github.com/NationalSecurityAgency/ghidra
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://www.nordicsemi.com/Software-and-tools/Development-Tools/nRF-Connect-for-mobile
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_gsg_ses%2FUG%2Fgsg%2Fsoftdevices.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fug_gsg_ses%2FUG%2Fgsg%2Fsoftdevices.html
https://www.capstone-engine.org
https://www.unicorn-engine.org
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/
https://github.com/projectbtle/att-profiler
https://www.rapid7.com/globalassets/external/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf
https://www.rapid7.com/globalassets/external/docs/Hacking-IoT-A-Case-Study-on-Baby-Monitor-Exposures-and-Vulnerabilities.pdf
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.ti.com/tool/BLE-STACK
https://www.ti.com/tool/Z-STACK
https://www.theregister.com/2016/10/13/possibly_worst_iot_security_failure_yet
https://www.theregister.com/2016/10/13/possibly_worst_iot_security_failure_yet
https://www.threadgroup.org/what-Is-thread
https://www.wired.com/2015/08/hackers-can-seize-control-of-electric-skateboards-and-toss-riders-boosted-revo/
https://www.wired.com/2015/08/hackers-can-seize-control-of-electric-skateboards-and-toss-riders-boosted-revo/
https://Zigbeealliance.org/solution/Zigbee/

argXtract: Automated Analysis of Stripped IoT Binaries ACSAC ’21, December 6–10, 2021, Virtual Event, USA

more details. However, large-scale analyses can be difficult to auto-
mate as well as being prohibitively expensive due to the need for
purchasing devices. Further, a variety of communication protocols
may be used, particularly with IoT peripherals, which could require
specialist hardware or software for each traffic analysis.

Mobile applications: IoT peripherals tend to interface with
a companion mobile app. Such apps are often available as large
repositories, are reasonably easy to analyse, and can provide indi-
cations of higher-layer processing. As such, they have been used
in security analyses to identify vulnerabilities in the associated
devices [20, 21, 70, 86, 94]. However, one app may interface with
multiple devices, making it difficult to separate out relevant infor-
mation for a single device. Also, low-level protocol details may
occur at the mobile OS level, transparent to the app, or the app may
act as a conduit between a device and a server without processing
the data itself. In such cases, it may not be possible to get a complete
picture of the IoT device’s security configuration via the app.

Web interface: If an IoT device communicates with an external
server, the exchanged messages may reveal information regarding
its configuration, particularly if it receives configuration commands
from the server. However, performing tests against these servers
may have legal implications. Also, automated tests may not always
be feasible on a large scale in the absence of physical devices because
the server may require authenticated requests from the device [92].

Firmware: The firmware on an IoT device tends to apply to
a single type of device and generally reflects its configuration
and functionality exactly. This has led firmware binaries to be
the information source of choice for a number of security analy-
ses [24, 25, 28, 42, 69]. However, firmware binaries are not always
easy to obtain, as developers do not always make them publicly
available. More importantly, firmware analysis is, due to its own
nature, far more complex than, e.g., mobile app analysis.

B VALIDITY CHECKS
In order to ensure that our analysis is performed on valid data,
we perform stringent validity checks on the output obtained from
argXtract. This is particularly done in the case of complex output
structures such as those for sd_ble_gatts_characteristic_add,
which has several levels of nested fields.

argXtract stores service handles for every service that is added
via the sd_ble_gatts_service_add call. For each characteristic
extracted from sd_ble_gatts_characteristic_add, we attempt
to match it to a service handle. If a characteristic cannot be uniquely
matched with a service in this way, it is not considered further (even
if its permission structure is fully valid as described below).

A BLE characteristic has certain properties (e.g., read, write,
notify) indicating how it may be accessed. It will also have corre-
sponding permissions. We test for the validity of such permissions
according to the properties. That is, if a characteristic has the read
property, we ensure that its read_perm (i.e., read permissions) has
a valid security mode and level, as described in the BLE specifica-
tion. If a characteristic has the notify property, we ensure that the
write permissions for its CCCD are valid. If a property isn’t set for a
characteristic, then an invalid permission structure can be ignored.
We obtained invalid results for a single binary within our dataset.

"SD_BLE_GATTS_CHARACTERISTIC_ADD ": [

{

"Solved ": true ,

"Values ": {

"r2": 537034148 ,

"readperm ": 240,

"writePerm ": 240,

"type": 1,

"uuid": 10843

}

}

]

Figure 8: FirmXRay output.

We also perform random manual checks on known character-
istics, i.e., whose properties and permissions are known (e.g., SIG-
defined or Nordic DFU). In this manner, we endeavour to produce
the most accurate analysis results.

C COMPARISON: ARGXTRACT, FIRMXRAY
We executed argXtract and FirmXRay against a random subset
of 302 binaries from the FirmXRay dataset, focusing on the sd_-
ble_gatts_service_add and sd_ble_gatts_characteristic_-
add supervisor calls, as those are commonly available in both tools.

argXtract returned non-empty outputs for 161 binaries (1.5hr
execution time). As described in Appendix B, we perform strin-
gent validity checks on characteristic structures that are output
by argXtract- particularly in terms of correct permission values.
These permissions are checked depending on the characteristic
properties. argXtract produced erroneous outputs for 16 binaries,
of which 14 were found to be different versions of the same binary.

FirmXRay returned 282 non-empty outputs. However, a signifi-
cant number (154) were found to contain invalid values for permis-
sions. Despite this, we cannot immediately take the output to be
incorrect because, as we have mentioned previously, this depends
on the characteristic properties. Unfortunately, we are unable to
perform the same type of validation as we do for argXtract (by
examining the property set), as the characteristic property set is
not available within FirmXRay’s output. That is, the characteristic
properties for sd_ble_gatts_characteristic_add are obtained
by parsing a structure pointed to by register r1, which also includes
the CCCD permissions, while the read and write permissions for the
characteristic value are obtained by parsing a structure pointed to by
register r2. The complete structure is available within argXtract’s
output, while only the fields r2, readperm, writePerm, type and
uuid are present within the output obtained by FirmXRay.

To illustrate this issue, we provide sample output structures (for
a single characteristic, due to space considerations) obtained by
FirmXRay and argXtract for (the same characteristic within) the
same input binary file in Figures 8 and 9, respectively. The values
output by FirmXRay for readperm and writePerm are invalid in
this example. However, the characteristic properties (within the
char_props construct in argXtract’s output, as depicted in Fig-
ure 9) indicate that the characteristic only has the notify property,
not read or write. This means the invalid values can be disregarded.
However, information about characteristic properties is absent from
FirmXRay’s output, making it infeasible to filter out invalid values.
For this reason, we are unable to perform a meaningful comparison
of the results of the two tools.

ACSAC ’21, December 6–10, 2021, Virtual Event, USA Pallavi Sivakumaran and Jorge Blasco

"sd_ble_gatts_characteristic_add ": [

{

"service_handle ": "4b8b",

"p_char_md ": {

"char_props ": {

"ignore ": 0,

"auth_signed_wr ": 0,

"indicate ": 0,

"notify ": 1,

"write": 0,

"write_wo_resp ": 0,

"read": 0,

"broadcast ": 0

},

"char_ext_props ": {

"wr_aux ": 0,

"reliable_wr ": 0

},

"p_char_user_desc ": 0,

"char_user_desc_max_size ": 0,

"char_user_desc_size ": 0,

"p_char_pf ": {

"format ": 0,

"exponent ": 0,

"unit": 0,

"name_space ": 0,

"desc": 0

},

"p_user_desc_md ": {

"read_perm ": {

"security_level ": 0,

"security_mode ": 0

},

"write_perm ": {

"security_level ": 0,

"security_mode ": 0

},

"ignore ": 0,

"wr_auth ": 0,

"rd_auth ": 0,

"vloc": 0,

"vlen": 0

},

"p_cccd_md ": {

"read_perm ": {

"security_level ": 1,

"security_mode ": 1

},

"write_perm ": {

"security_level ": 1,

"security_mode ": 1

},

"ignore ": 0,

"wr_auth ": 0,

"rd_auth ": 0,

"vloc": 1,

"vlen": 0

},

"p_sccd_md ": {

"read_perm ": {

"security_level ": 0,

"security_mode ": 0

},

"write_perm ": {

"security_level ": 0,

"security_mode ": 0

},

"ignore ": 0,

"wr_auth ": 0,

"rd_auth ": 0,

"vloc": 0,

"vlen": 0

}

},

"p_attr_char_value ": {

"p_uuid ": {

"uuid": "2a5b",

"type": 1

},

"p_attr_md ": {

"read_perm ": {

"security_level ": 0,

"security_mode ": 0

},

"write_perm ": {

"security_level ": 0,

"security_mode ": 0

},

"ignore ": 0,

"wr_auth ": 0,

"rd_auth ": 0,

"vloc": 1,

"vlen": 1

},

"init_len ": 1,

"init_offs ": 0,

"max_len ": 20,

"p_value ": "00"

},

"value_handle ": "2d5f",

"user_desc_handle ": "2567" ,

"cccd_handle ": "ac66",

"sccd_handle ": "3559"

}

]

Figure 9: argXtract output.

	Abstract
	1 Introduction
	2 Motivation
	3 argXtract
	3.1 Application Code Base Identification
	3.2 Data Identification
	3.3 Function Boundary Identification
	3.4 COI Identification
	3.5 Tracing and Argument Processing

	4 Evaluation
	4.1 Test Set and Ground Truth
	4.2 Accuracy of Function Identification
	4.3 Function Pattern Matching
	4.4 Correctness of Results

	5 Case Study: BLE Security and Privacy (Nordic)
	5.1 Security of BLE Data
	5.2 Use of Fixed Passkeys
	5.3 User Tracking due to Fixed Addresses
	5.4 Manufacturer/Device Names and Privacy

	6 Applicability Studies
	6.1 Case Study: BLE Security and Privacy via Function Pattern Matching (BlueNRG)
	6.2 Case study: ANT Security (Nordic)

	7 Limitations and Future Work
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Analysis of Potential Information Sources for IoT Vulnerabilities
	B Validity Checks
	C Comparison: argXtract, FirmXRay

