
Uncovering Vulnerabilities of Bluetooth Low Energy IoT from
Companion Mobile Apps with Ble-Guuide

Pallavi Sivakumaran
pallavi.sivakumaran.2012@live.rhul.ac.uk
Royal Holloway, University of London

United Kingdom

Chaoshun Zuo
zuo.118@osu.edu

The Ohio State University
USA

Zhiqiang Lin
zlin@cse.ohio-state.edu
The Ohio State University

USA

Jorge Blasco
jorge.blasco.alis@upm.es

Universidad Politécnica de Madrid
Spain

ABSTRACT
Increasingly, with embedded intelligence and control, IoT devices
are being adopted faster than ever. However, the IoT landscape and
its security implications are not yet fully understood. This paper
seeks to shed light on this by focusing on a particular type of IoT de-
vices, namely the ones using Bluetooth LowEnergy (BLE). Our con-
tributions are two-fold: First, we present Ble-Guuide, a framework
for performingmobile app-centric security issue identification.We
exploit Universally Unique Identifiers (UUIDs), which underpin
data transmissions in BLE, to glean rich information regarding de-
vice functionality and the underlying security issues. We combine
this with information from app descriptions and BLE libraries, to
identify the corresponding security vulnerabilities in BLE devices
and determine the security or privacy impact they could have de-
pending on the device functionality. Second, we present a large-
scale analysis of 17,243 free, BLE-enabled Android APKs, systemat-
ically crawled from the official Google Play store. By applying Ble-
Guuide to this dataset, we uncover that more than 70% of these
APKs contain at least one security vulnerability. We also obtain in-
sights into the identified security vulnerabilities and their impact.

CCS CONCEPTS
• Security andprivacy→ Security protocols;Mobile andwire-
less security; Software reverse engineering; Privacy protec-
tions; Access control.

KEYWORDS
IoT Security; UUID; BLE; Android.
ACM Reference Format:
Pallavi Sivakumaran, Chaoshun Zuo, Zhiqiang Lin, and Jorge Blasco. 2023.
Uncovering Vulnerabilities of Bluetooth Low Energy IoT from Compan-
ion Mobile Apps with Ble-Guuide. In Proceedings of the 2023 ACM Asia
Conference on Computer and Communications Security (ASIA CCS ’23), July

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’23, July 10-July 14, 2023, Melbourne, Australia
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05…$15.00
https://doi.org/10.1145/3488932.3517410

10-July 14, 2023, Melbourne, Australia. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3488932.3517410

1 INTRODUCTION
Over the past few years, billions of computing devices have been
connected to the Internet to offer a wide range of functionalities in-
cluding but not limited to sensing, locating, tracking, monitoring,
and controlling, by way of the Internet of Things (IoT). Increas-
ingly, this system of “smart devices” has come under scrutiny due
to various security issues such as misconfiguration (e.g., use of de-
fault password in IoT cameras [10]), over-privileged apps [20], and
insecure MQTT protocols [26]. However, this list is by no means
complete. The IoT is comprised of a variety of platforms and com-
munication protocols (e.g., Bluetooth, Zigbee, and WiFi), each of
which have their own characteristics and security considerations.
It is therefore imperative to analyze each technology individually
as well as collectively, to gain a complete understanding of IoT se-
curity.

In this paper, through a mobile app-centric analysis, we system-
atically measure and analyze the functionality and security issues
of BLE devices. We focus on Bluetooth Low Energy (BLE), a fast-
growing wireless IoT technology, with more than 15 billion BLE-
enabled devices shipped over the past few years [15]. Through a
mobile app-centric analysis, we systematically measure and ana-
lyze the functionality and security issues of BLE devices. Doing so
is by no means trivial, as an application may contain a variety of
functionality, much of it external to BLE. Therefore, analyzing the
APK code as a whole would result in an inaccurate view of BLE us-
age. Similarly, relying on vectors such as Google Play categories to
derive this information would result in a coarse-grained and inac-
curate view of the BLE usage too, as most apps fall under generic
headings such as “Tools” or “Lifestyle”, which are not indicative of
the actual BLE functionality.
Key Insights andTechniquesWeovercome the above challenges
by deriving additional knowledge from a variety of sources, includ-
ing Google Play, the Bluetooth Special Interest Group (SIG), and
the APK itself with a novel focal point—Universally Unique Iden-
tifiers (UUIDs), which underpin data transactions in BLE. That is,
data on BLE devices are stored within data structures known as
attributes, where each attribute is identified using a UUID. Some
UUIDs have fixed meanings as defined by the Bluetooth SIG, while

https://doi.org/10.1145/3488932.3517410
https://doi.org/10.1145/3488932.3517410

others are vendor/developer-defined. Because a UUID tends to rep-
resent a specific type of data, the use of UUIDs within BLE ap-
plications can provide valuable insights about the data on the de-
vice, security vulnerabilities and corresponding attacks that can be
mounted against the devices or the data held on them. As such, we
present a framework, Ble-Guuide, for identifying and prioritizing
applications that interface with vulnerable BLE devices, as well as
the first large-scale analysis of the functionality and security of
BLE IoT. We do this by mining and categorizing the UUIDs from
BLE-enabled apps, and performing a BLE-centric security analysis
of such apps.

Ble-Guuide assigns every APK the set of functionalities based
on its UUIDs, and further augments this with data obtained from
the Bluetooth SIG database andGoogle Play using natural language
processing techniques. It also performs a six-fold security analysis
of the UUIDs and APKs. The combined output enables us to iden-
tify vulnerable apps that are flagged as having sensitive or critical
BLE functionality.
Findings The results from our analysis by Ble-Guuide with a
dataset of 12,500+ unique BLE UUIDs, extracted from 17,243 APKs,
give rise to the following findings:
• Prevalence of issues:Our analysis showed that more than

70% of the tested applications exhibited at least one of the 6
security vulnerabilities identified by Ble-Guuide, and over
10,000 apps exhibited more than one vulnerability. We per-
formed a series of manual analysis to verify these results
and found applications that revealed the presence of unpro-
tected user health information, had potential for PII leakage
and included insecure authentication mechanisms in a secu-
rity application.
• Unauthorized data access: Around 70% of all APKs use

SIG-defined UUIDs, and 1,457 APKs use only SIG-defined
UUIDs. These include information such as glucose data (158
apps) or blood oxygen and pressure (250 apps) that account
for more than 120 million downloads. These are susceptible
to unauthorized access by co-located apps in the absence of
application-layer security [7, 36]. As Google states in their
developer guidelines [7], and as shown by previous research [36],
the data held by such UUIDs is vulnerable to unauthorized
access by co-located apps in the absence of application-layer
security.
• Incorrect usage of UUIDs: Over 50 APKs use SIG-defined

UUIDs incorrectly. A number of APKs appear to use health-
related services when there was no apparent reason for do-
ing so.
• Lack of over-the-air update: A large percentage of ap-

plications do not contain an over-the-air firmware update
mechanism. This implies that, even if serious security vul-
nerabilities were found in a BLE device, there would be no
easy way of fixing them. In addition, more than 200 APKs,
with more than 100 million downloads overall, include inse-
cure firmware update processes.

2 BACKGROUND
This section describes the structure and usage of data in BLE, as
well as pertinent security considerations. Note that, while several

security issues have been identified with BLE over time [11, 18, 25],
in this paper we focus only on the security and privacy issues of
BLE data as defined by the Generic Attribute Profile (GATT) layer
of BLE. We do not focus on the security of the wireless connec-
tion [11, 18, 25] nor the security of other layers that are in charge
of other aspects that have security and privacy implications such
as the MAC address selection [14].

2.1 Data on BLE Devices
Unlike Bluetooth Classic, BLE only handles small, discrete values
of data that are known as attributes. The format of attributes and
the underlying mechanism of how attributes are read and written
are defined by the Attribute (ATT) Protocol. The Generic Attribute
(GATT) Profile defines a hierarchical structuring of attributes to
achieve specific purposes [15].
Attribute StructureAn attribute has a specific format, consisting
of a handle, a type, and a value. The handle can be thought of as
the attribute’s address. The type is a 128-bit UUID that describes
the type of data being contained in an attribute. The value depends
on the type of attribute and may hold actual data or may be used
to identify the attribute [22].
Services and Characteristics GATT describes different types of
attributes, the most basic being a characteristic. This holds a sin-
gle value and is usually the type of attribute that holds the data
of interest. Several related characteristics are grouped into a ser-
vice.Services and characteristics are both types of attributes and
therefore are identified using UUIDs.
Adopted vs. CustomUUIDsTheBluetooth SIG has defined some
standard services and characteristics with specific meanings. This
means that the associated UUIDs can be tied to the defined be-
haviour.We refer to this type of UUID, i.e., one that has SIG-defined
functionality, as an adopted UUID.

As an example, the SIG has defined a Continuous Glucose Mon-
itoring (CGM) Service for use with BLE-enabled glucose measure-
ment devices. It describes a set of characteristics that must be im-
plemented on a CGM device in order for the device to be able to
claim conformance with the CGM Service specification. The CGM
service and included characteristics have fixed UUIDs.This enables
interoperability, as a connected device will know from the UUIDs
the type of data that is held and the behaviour that can be expected.

All UUIDs defined by the SIG are derived from the same Base
UUID [23]. A range of 232 values (which use the Base UUID) is
reserved by the SIG [40]. That is, UUIDs that are created by mod-
ifying the first 32 bits of the Base UUID should not be defined by
vendors for their own use, although they can use the ones defined
by the SIG. To obtain a custom UUID within the reserved range,
vendors need to pay a fee to the SIG, which then assigns a member
UUID [16]).

The Bluetooth specification allows for the creation of custom
services and characteristics, where the developer has full control
over the type and format of data.These services and characteristics
will require customUUIDs. Any 128-bit value outside the Bluetooth
SIG reserved range may be used by developers to create custom
UUIDs for their own services and characteristics.

2

BLE Security
Analysis

UUID Extractor
& Classifier

Functionality Mapper

Vulnerability
ReportUFUs

KFUs

NLP
Processor

SIG Data
Extractor

UUID
Mapper

Google Play
Description

Bluetooth SIG
Description

Android
APK

Figure 1: Overview of Ble-Guuide.

2.2 Security Issues with BLE Characteristics
Weclassify GATT security and privacy issues into twomain groups,
depending on the level of access an attacker would have to the de-
vice characteristics: reads or writes.
CharacteristicReadsTheBLE specification providesmechanisms
to establish encrypted connections between devices via pairing.
Devices that do not require pairing, or that use insecure pairing
mechanisms, are susceptible to unauthorized connections from third
parties [48]. Also, devices that do not use application-layer secu-
rity to communicate with their corresponding app can be accessed
without restrictions by co-located apps that have been granted the
BLUETOOTH permission [36].

The security implications of unauthorized characteristic reads
will be device specific. For instance, in a fitness tracker, this would
allow attackers, to read sensitive information such as the user’s
heart rate or step count. For other devices this could mean access
to the glucose level for a glucose meter or the device status for a
smart lock.
CharacteristicWrites In a similar way as for characteristic reads,
a device with an insecure pairing process or lack of app-layer se-
curity can be susceptible to unauthorized writes. In this case, de-
pending on the kind of device being affected, the impact of this
security issue can be far greater. An unauthorized write on an in-
sulin pump could result in incorrectly dispensing an insulin dose.
More broadly, for devices allowing over-the-air firmware updates,
this could result in modified and potentially malicious firmware
images being installed.

As these examples show, the security implications of the same
kind of vulnerability will be very different depending on the func-
tionality of the affected device. Knowing the type of data held
within each UUID on the device can tell us a lot about its function-
ality, and the corresponding security implications if such a device
is vulnerable. We use this notion to develop our framework.

3 BLE-GUUIDE: A FRAMEWORK FOR
PRIORITIZED SECURITY ANALYSIS OF BLE
DEVICES

In this section, we describe our BLE functionality and security anal-
ysis framework, Ble-Guuide.The framework (depicted in Figure 1)
takes as input a BLE APK, as well as data from Google Play and the
Bluetooth SIG, and identifies its BLE-relevant functionality, as well
as possible security vulnerabilities. It then combines both to iden-
tify, from a dataset of thousands, a smaller subset of apps where

specific BLE security vulnerabilities will have more severe implica-
tions for their users. The framework comprises three main compo-
nents: (𝑖)UUID Extractor & Classifier: extracts BLE UUIDs from
Android APKs and classifies them according to our custom catego-
rization, (𝑖𝑖) Functionality Mapper: identifies BLE-relevant func-
tionality within an APK, and (𝑖𝑖𝑖) BLE Security Analysis: per-
forms a BLE-specific security analysis.

For both analyses, i.e., security and functionality, we use UUIDs
as the starting point. Some of these UUIDs will have a publicly
known functionality (e.g. UUIDs in the BLE specification) while
others won’t have public data available. We describe how we cate-
gorize UUIDs intoKnown andUnknown Functionality UUIDs (KFUs
and UFUs) in section 3.1. Our technique for assigning functional-
ity to UFUs is described in §3.2. The mapped UFU functionality,
along with other inputs, is used to perform BLE-relevant function-
ality mapping for the overall APK, and hence the associated BLE
peripheral. Finally, the security analysis performed by our system
is described in §3.3.

3.1 UUID Extractor and Classifier
The functionality and security analyses performed by Ble-Guuide
both use UUIDs as the starting point.These are first extracted from
an APK before being classified according to our categorization.
UUIDExtractionWeadapt the algorithmdescribed in BLEScope [48]
to perform UUID extraction. Specifically, we perform permission
analysis for an APK to check whether it declares BLUETOOTH
permissions. If it does, then it is further analyzed to see whether it
uses standard Bluetooth API calls to interact with the correspond-
ing BLE device(s). By augmenting the algorithm described in BLE-
Scope with getter and setter information for UUIDs, we perform
UUID extraction against input APKs. The final output is stored as
a JSON file, containing the UUIDs as well as the method(s) within
which the UUID was found.
Categorizing BLE UUIDs We categorize UUIDs depending on
whether the functionality provided by them is publicly known or
not. For this, we utilize the Bluetooth SIG as our primary source
of information, as the SIG describes all adopted service and char-
acteristic UUIDs in terms of their functionality. We also use UUID
information from BLE chipset manufacturers and device vendors
when they are uniquely defined and publicly documented.
Known Functionality UUIDs The BLE specification provides a
list of adopted services and characteristics that can be used by de-
vicemanufacturers to achieve functionality such as heart rate mon-
itoring (0x180D), insulin delivery (0x183A) or user data gathering
(0x181C) among others. In addition to this, many vendors provide
publicly available information about their devices and how to in-
teract with them in the form of SDKs or other documentation. We
consider the UUIDs representing these services and characteristics
as Known Functionality UUIDs or KFUs. That is, they have specific
assigned functionality or meaning in the context of Bluetooth Low
Energy that we can derive from publicly available information.

Our KFU database includes all the adopted service and char-
acteristics defined by the BLE specification. We also include SIG-
assignedmember UUIDs (which can be used as service UUIDswithin

3

their own applications), but onlywhen unique functionality is asso-
ciated with them. In addition, we include UUIDs that are uniquely
defined and publicly documented by BLE chipset manufacturers or
device vendors. In the case of chipset manufacturers, these UUIDs
will be present, independently of the device functionality, if the
device has been developed using the manufacturer toolkit. An ex-
ample of these would be UUIDs defined for over-the-air (OTA)
firmware updates, also referred to as device firmware update (DFU).

We obtain such KFUs from manufacturer websites or, in a few
cases, from developer sites (but only if multiple sites cite the UUIDs
as belonging to the same device, and no sites assign different func-
tionality to them). We also update our list of KFUs using a “feed-
back” mechanism from the UFU analysis, as described below.

Since UFUs are undocumented, they will likely only be used
in a single device and its associated APK. The exception to this
might be in the case of device clones, where a single base device is
re-branded under different names and with different apps. Taking
this into account, we make the assumption that any UUID that is
present in more than 5 APKs within our dataset may well be pub-
licly documented, and perform a search for potential functionality.
If such functionality is identified, we add it to the KFU list. If no
functionality can be reliably discerned, then the UUID remains on
the UFU list.

When performing this “feedback” analysis, we observed that
some of the most common UFUs appeared to use the BLE Base
UUID incorrectly. Exploring further, we found that 1,685 UUIDs
used in more than 3,500 APKs (i.e., over 20% of applications in
our dataset) define custom UUIDs derived from the Bluetooth Base
UUID, which have not currently been assigned any functionality
in Bluetooth specifications. This is despite a statement by the Blue-
tooth SIG that UUIDs in this range are reserved. While it may not
cause issues at present, if in future these UUIDs are given a new
meaning, then there is potential for conflict or confusion. For this
reason, we exclude these UUIDs from our KFU list.
Unknown Functionality UUIDs We consider UUIDs that are
not classified as KFUs to be Unknown Functionality UUIDs or UFUs.
UFUs are typically generated by BLE device developers when they
are developing BLE devices and their corresponding applications.
These UUIDs are expected to be randomly generated, to avoid colli-
sions, and there is no formal or reliable source of information that
is publicly available regarding them. Note that UFUs are always
custom UUIDs, while KFUs can be adopted or custom.
UUID Classification The Classifier separates UUIDs into KFUs
and UFUs, where KFUs are used for deriving security implications,
as described in §3.3, as well as for validating Ble-Guuide before it
is applied to UFUs.

3.2 Functionality Mapper
In this section, we describe the functionality mapping component
of Ble-Guuide, which identifies the BLE-relevant functionality con-
tained within an APK, and which is thereafter used to prioritize se-
curity analyses. Our functionality mapping utilizes three primary
sources of information:

(1) Mobile Applications: Because a UUID holds a single type
of data, the functionality of a BLE device can be gleaned

from the UUIDs defined within a mobile app that commu-
nicates with it. While a mobile app as a whole may con-
tain information that is irrelevant to BLE functionality, Ble-
Guuide employs a proximity-based method to obtain BLE-
relevant information.

(2) Bluetooth SIG: Vendor-specific libraries used for incorpo-
rating BLE functionality into a mobile application may shed
light on the type and functionality of BLE devices released
by the vendor.We therefore extract libraries frommobile ap-
plications and cross-reference them against qualified prod-
ucts listed on the Bluetooth SIG database to provide a new
vector of information.

(3) Google Play:Descriptions on Play provide overall informa-
tion about an app’s functions, including its BLE functional-
ity, which can serve to augment the other data.

The FunctionalityMapper has three sub-components:UUIDMap-
per, SIG Data Extractor and NLP Processor. Each component
processes one or more of the above three data sources and pro-
duces a set of possible functional categories. The outputs of the
three are then combined to form the final functionality mapping
for the APK (and hence, the associated BLE device).
Building a database of functional categories In order to de-
rive functional categories, we manually analyzed several hundred
APKs, specifically their metadata, Google Play descriptions, and
manufacturer websites. For each category, we provide a list of re-
latedwords (e.g., microphone, speaker, camera, etc., for an audio_visual

category). As a word can have several meanings wemap eachword
to its corresponding WordNet definition [29]. We also include a
blacklist for each word, to avoid false positives in cases where a
word can be included within another word (e.g., “pulse” is a sub-
string of “impulse”). Overall, we have 13 high-level functional cat-
egories and 40 sub-categories. The complete list of categories, with
descriptions, is provided in our repository1.
UUID Mapper Ble-Guuide uses Androguard [6] to extract all
strings, fields andmethod signatures from anAPK. Each of these el-
ements is individually tested against the functional category data-
base, to obtain element-wise lists of functional category assign-
ments. With method signatures, we found that the combination
of the class and method names produced the most accurate results.
For example, for the method Lcom/a/b/classA;->methodX(descriptor),
we extract the classA and methodX components.

Using the entire set of functions/fields/strings found within an
application would result in significant false positives. Ble-Guuide
overcomes this by applying a proximity-based approach and con-
sidering only those method(s) that actually call the UUID. That is,
it only considers the class and method names, as well as the field-
s/strings that are present within the method, for methods that ac-
tually utilize a UUID.
SIG Product Finder The Bluetooth SIG publishes details of quali-
fied/declared components that incorporate the Bluetooth technol-
ogy. If a specific product version was known, then searching for
the product within the SIG Product Database would probably re-
sult in the most accurate description of BLE-specific functionality
within the product (assuming such a description was provided).

1https://github.com/projectbtle/BLE-GUUIDE
4

https://github.com/projectbtle/BLE-GUUIDE

Bluetooth products are developed by several manufacturers and
in the case of common chipsets such as Nordic or Texas Instru-
ments, the developers may be using specific libraries to access BLE
devices. Because of this, the SIG product finder firsts performs a
BLE library identification process. Then, it extracts identifying in-
formation from the library code (e.g. package names) and uses the
SIG Product Database to map the UUIDs included in that library
to a specific functionality (as defined in our functional category
keywords). This allows us to identify the functionality of UFUs
belonging to manufacturers with public data in the SIG Product
Database.

Library Classifier: Our library identification is not based on re-
sults from tools such as LibRadar or LibScout as they do not include
information about BLE libraries [12, 28]. Instead, we first compile
the list of methods within which the UUIDs have been used. For
all the methods, we extract the first level package name (including
the second-level domains included in each package). For instance,
for the call com.example.BLEManager.getHR()we extract com.example. We
consider this list a first approximation to our libraries. To fine-
tune this, We then calculate the pairwise distance between all the
method calls. Our distance function compares each level of the
package name and adds one per each different item at the same
package name level. For instance, com.example.BLEManager.getHR() and
com.example.Bluetooth.HRM.getHeartRate() would be three items apart.
If we find two method signatures that are identical apart from one
part of the package name, we consider them to be the same library
(but re-branded).

SIG Device Descriptions: Once we obtain the BLE libraries, we
perform an automated search of the SIG Product Database2. We
first match the main package name of the library against the name
ofmanufacturers includedwithin the SIG Product Database (10K+).
We compare the library name with companies’ names using the
Jaro-Winkler distance [43] which favors matches in the beginning
of the string. After manual testing, we found 75% to be a good
threshold to avoid false positives. To avoid mismatches with very
short words, we only perform this process with library names of 3
or more characters.

We perform searches against the SIG Product Database using
these terms. If a search returns more than 20 items, we consider
the term to be too generic and skip it. For each item returned, we
get the product name and marketing description, and input these
to the NLP processor.
NLP Processor Given some descriptive text and a keyword, the
NLP Processor executes the Lesk algorithm [13] to identify the
meaning of the keyword within the context of the description. If
the meaning matches the one included within our functional cat-
egory keyword, we add the category to a list. This process is de-
scribed in Algorithm 1.
Play Descriptions Google Play hosts Android applications, typ-
ically with a description of the application’s primary functions.
While these descriptions generally describe the overall function-
ality of the APK reasonably well, the fact that they encompass
the application as a whole means that associating the functional-
ity solely to the BLE component (UUID) may not be suitable. We

2https://launchstudio.bluetooth.com/Listings/Search

Algorithm 1: NLP based category matching
Result: App functional categories
description = getAppDescription(appPackage);
categories = [];
for 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 ∈ 𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠 do

for 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 ∈ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 do
if 𝑘𝑒𝑦𝑤𝑜𝑟𝑑 ∈ 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 then

𝑚 ← 𝑙𝑒𝑠𝑘 (𝑘𝑒𝑦𝑤𝑜𝑟𝑑,𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) ;
if𝑚 ∈ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 [𝑘𝑒𝑦𝑤𝑜𝑟𝑑] [𝑚𝑒𝑎𝑛𝑖𝑛𝑔𝑠] then

𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠⌢⟨𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦⟩

use Google Play descriptions as an input to our functionality map-
per to determine the functionality of an application. This is useful
for cases where it is not possible to automatically determine the
functionality of UUIDs within the application. For each APK, we
download the Google Play description. After normalizing, trans-
lating (if non-English), tokenizing and stemming the description,
we look for appearances of the keywords defined in our functional
category database. Such keywords, along with the app description,
are fed into the NLP Processor.
Combined FunctionalityWecombine the information fromUUIDs
and the results from the NLP-processed SIG and Play descriptions
to map APKs to BLE device functionalities. Our three methods
work at different levels of granularity. While the UUID Mapper is
capable of assigning functionalities directly to UUIDs, the SIG and
Play outputs are at the library/application level. Because of this,
we only consider UUIDs that have been assigned to a single cat-
egory, but accept when the Google Play descriptions and the SIG
product search return several functionalities (i.e. firmware update,
heart rate measurement, etc.).

3.3 BLE Security Analysis
Our security analysis is split into multiple tasks, identifying the fol-
lowing security vulnerabilities: Sensitive KFUs, Anomalous Use of
AdoptedUUIDs, InsecureDFU,InsecureAttribute Reads andWrites,
and Insecure Passkey Entry. The first three analyses are directly
derived from KFUs, while the remainder involve additional pro-
cessing of the APKs. For each analysis, we summarize the specific
detection policy of Ble-Guuide with a summary box at the end.
Sensitive KFUs The Bluetooth SIG defines a large number of ser-
vices and characteristics, covering domains from environment to
health and fitness. For all SIG-defined characteristics, including
health and fitness, and excluding only those concerning insulin
delivery, the maximum security mandated in the specifications is
protection via the standard Bluetooth pairing mechanism. If the
specification is adhered to, then protection at higher layers will not
be implemented for these characteristics. However, pairing/bond-
ing alone is not sufficient protection on platforms that host multi-
ple third-party applications such as Android [36]. This means that
the BLE data within adopted UUIDs can be vulnerable to access by
unauthorized apps if there is no app-layer security. That is, a ma-
licious application could access sensitive data (e.g., heart rate or
glucose measurements) from a user’s BLE device, without users’
awareness, including ones that deal with user with a BLE-enabled

5

https://launchstudio.bluetooth.com/Listings/Search

medical device. This observation is particularly concerning when
the data in question is of a sensitive nature, such as heart rate,
glucose measurements or an insulin delivery device configuration.
To mitigate this vulnerability both the app and device should be
updated to introduce app-layer security. Alternatively, developers
may want to introduce application-level access control to enable
other apps to access their device with the user’s authorization [37].

A sensitive KFU vulnerability is detected if (i) an app uses
adopted UUIDs that hold sensitive data such as user’s health or
PII and (ii) does not contain any app-layer security (indicated
by cryptographically tainted BLE API calls).

Anomalous Use of Adopted UUIDs Adopted UUIDs typically
have clearmeaning and functionality assigned to them. Ble-Guuide
makes use of the defined functionality for adopted UUIDs to cre-
ate a mapping between the UUIDs and the Google Play categories
that they could be expected to fall under. Although Google Play
categories don’t provide fine-grained details about an app’s BLE
functionality, they do provide a high-level view that is sufficient
to detect anomalies. For example, a Heart RateMeasurement UUID
may be expected to be used in a Medical, Sports, or Health & Fit-
ness application. However, inclusion of this UUIDwithin a Finance
application would be surprising. Adopted UUIDs are used because
they enable interoperability between applications and BLE devices.
An anomalous use of an adopted UUID could result in the wrong
data being interpreted by another application or the device operat-
ing system. For instance, a device mistakenly using a health and fit-
ness UUID characteristic could inadvertently interfere with health
related readings, affecting trend and recommendations provided
by other health related apps on the device. To prevent these sce-
narios developers should avoid using adopted UUIDs when imple-
menting non-standard functionality.

Ble-Guuide applies the mapping to the input APK, to identify
possible anomalies between the inclusion of an adoptedUUIDwithin
an Android app and the functionality of the app as indicated by its
Google Play category.

An anomalous use of UUIDs is identified if the adopted
UUIDs in an app does not match the Google Play category as
identified by Ble-Guuide.

Insecure DFU Some BLE chipsets allow for Over The Air (OTA)
firmware updates, i.e., updating of BLE firmware via the BLE inter-
face itself.This process is normally referred to as aDevice Firmware
Update (DFU) and it enables a BLE peripheral device to have its
firmwaremodified by receiving updated firmware from a connected
BLE application.

A process for updating firmware is often necessary if bugs or
security issues are discovered after a device has been released into
the market. However, if the update process itself is not secure, the
BLE device could be vulnerable to unauthorized firmware modi-
fications. Different chipset vendors implement different DFU pro-
cedures, some of which have security mechanisms built-in by de-
fault, some that require configuration by developers in order to be

Table 1: Firmware Update UUIDs

Manufacturer F/W Update UUID(s) Secur.

Nordic Legacy[5] 0000153X-1212-EFDE-1523-785FEABCD123 7

(X=0-4)

Nordic Secure[3] 0000FE59-0000-1000-8000-00805F9B34FB 3

8E400001-F315-4F60-9FB8-838830DAEA50 3

8EC9000X-F315-4F60-9FB8-838830DAEA50 3

(X=1,2)

8EC90003-F315-4F60-9FB8-838830DAEA50 3

8EC90004-F315-4F60-9FB8-838830DAEA50 3

Texas Instr.[2] F000FFXX-0451-4000-B000-000000000000 D
(XX=C0,C1,C2,C3,C4,C5,D0,D1)

Qualcomm[4, 32] 00001016-D102-11E1-9B23-00025B00A5A5 D
0000110X-D102-11E1-9B23-00025B00A5A5 D
(X=0,1,2)

Silicon Labs[35] 1D14D6EE-FD63-4FA1- BFA4-8F47B42119F0 D
F7BF3564-FB6D-4E53-88A4-5E37E0326063 D
984227F3-34FC-4045-A5D0-2C581F81A153 D
4F4A2368-8CCA-451E-BFFF-CF0E2EE23E9F D
4CC07BCF-0868-4B32-9DAD-BA4CC41E5316 D
25F05C0A-E917-46E9-B2A5-AA2BE1245AFE D

Cypress[1] 0006000X-F8CE-11E4-ABF4-0002A5D5C51B D
(X=0,1)

NXP[30] 003784CF-F7E3-55B4-6C4C-9FD140100A16 3

013784CF-F7E3-55B4-6C4C-9FD140100A16 3

ST BlueNRG[39] XXXXXXX0-8506-11E3-BAA7-0800200C9A66 D
(XXXXXXX=8A97F7C,122E8CC,210F99F,

2691AA8,2BDC576)

ST STM32WB[38] 0000FE20-CC7A-482A-984A-7F2ED5B3E58F 3

0000FEYY-8E22-4541-9D4C-21EDAE82ED19 3

(YY=11,22,23,24)

7= DFU with known security issues. D = DFU with
developer-dependent security. 3= DFU with some security

mechanisms by default.

secure, and some that have no security options. Each of these DFU
procedures use and therefore can be identified by a specific set of
UUIDs. Table 1 lists the DFU UUIDs by chipset vendor, with an
indication as to whether the procedure has security that is built-in,
developer-dependent or unavailable. We verified this manually by
checking if the DFU processes used by vendors included any kind
of firmware verification process.

An insecure DFU vulnerability is identified if (i) an APK con-
tains UUIDs associated with insecure DFU processes and (ii)
does not contain any UUID associated with DFU processes with
security mechanisms.

Insecure Attribute Reads and Writes While understanding se-
curity implications and their impact is fairly straightforward with
KFUs, doing the same for UFUs requires greater effort and, in the

6

general way, requires a case-by-case analysis. If no other informa-
tion was provided, this would be a monumental task, given the
potentially large UUID “space” of almost 2128 possible values. To
focus on our analysis, we check, using information flow analysis
whether the API calls that read and write information to UUIDs
in that app (readCharacteristic and writeCharacteristic) are tainted
with cryptographic API calls. These would mean that they imple-
ment some kind app-layer security (we do not specifically analyze
the security of the implementation but check if there is any kind
of app layer security present). If no taints are found, the UUIDs
that access the sensitive services are identified as being vulnerable
to unauthorized reads and writes. To do this, we leverage on BLE-
Cryptracer [36]. First, we identify API calls related to both cryp-
tography and attribute reads and writes (i.e. mark them as sources
and sinks). Then, we use slicing to trace register values in smali
code and check if cryptographic operations taint data being sent
via attribute writes (e.g. encryption) or data received via attribute
reads taint any cryptographic operation (e.g. decryption).

An insecure read vulnerability is identified if the data read
by readCharacteristic does not taint a cryptographic API. An in-
secure write vulnerability is detected if the data written to a
device via writeCharacteristic is not tainted by a cryptographic
API call.

Insecure Passkey Entry Developers who want to protect their
devices againstMITMattacks and unwanted connections fromother
devices can make use of the pairing and bonding capabilities avail-
able in the BLE specification. In Android, bonding can be initiated
directly by the app if it calls the createBond() method before obtain-
ing the list of services. Otherwise, it will be initiated by the OS af-
ter receiving a GATT INSUFFICIENT AUTHENTICATION or GATT INSUFFICIENT

ENCRYPTION error. In both cases, the OS will take care of the bonding
unless the developer wants to modify this process by capturing
the ACTION BOND STATE CHANGED broadcast action. One of the changes
that developers can introduce during the bonding process is the
PIN code that will be used to secure the BLE connection using
the Passkey Entry association model. Developers who intercept the
OS bonding process will set the PIN with a call to setPin(byte[]).
Setting the PIN to a hardcoded value would make the connection
equivalent to the JustWorks associationmodel, resulting in authen-
ticated keys that are vulnerable to Man-in-the-Middle attacks.

An insecure Passkey Entry bonding process is detected if Ble-
Guuide finds a call to setPin(byte[]) with a fixed constant
value.

4 RESULTS
In this section we present the experiment results of applying Ble-
Guuide to a large dataset of APKs. For our measurement, we use
a dataset of 17K+ Android apps obtained from Google Play. This
dataset allows us tomeasure the BLE ecosystem in terms of its func-
tionality and popularity (based on the number of downloads). We
build this dataset from an initial dataset of 2 million Google Play

apps crawled recently. We filter these apps using the criteria de-
scribed in §3.1 to produce a dataset of 17,243 APKs. During this pro-
cess, we found another set of 50K+ apps that included BLE-related
permissions but only scanned to look for BLE advertisements. Al-
though this kind of behaviour could have privacy implications (e.g.
user tracking), they do not interact with BLE devices, and so were
left out of this study.

4.1 Accuracy and Coverage
By executing the UUID Extractor against this dataset, we obtained
12,352 unique, valid3 UUIDs from 16,197 APKs (i.e. valid UUIDs
could not be extracted from 1,046 APKs). Ultimately, 454 KFUs and
11,898 UFUs were obtained, with 1,015 APKs having only KFUs,
7,878 APKs having only UFUs, and 7,304 APKs having both.

Ble-Guuide uses three different sources to categorize the BLE-
relevant functionality contained within an APK: the Mobile Appli-
cations, the Bluetooth SIG database and Google Play app descrip-
tions. Our coverage results are summarized in Table 2. Using all
three information sources, we are able to find matches for 87.7% of
the analyzed apps (98.3% when considering their download count).
Google Play From our initial dataset of 17K+ apps, we were able
to obtain app descriptions for all except 12 of the apps (we had to
use an online translator for 249 apps).

Using our NLP processor over Google Play descriptionswewere
able to extract functional categories for 11,734 apps, accounting for
97.1% of the overall downloads. This makes the extraction of func-
tionality via NLP processing the method with the most coverage.

While most of the apps (25% of the total, 37.6% of the ones with
a functional category identified) had a single category, in terms of
downloads, most of the apps identified had three functional cate-
gories assigned (71.1% of the appswith a functional categorymatch).
This is expected, as a great number of applications had both medi-
cal and fitness categories assigned because of their access to heart-
rate related data.

Table 2: Coverage of each of the functionality mapping
methods and their combination. ↓= Downloads in millions.

No Match Match Matched Functional Categories
1 2 3 4+

K
FU

s

Apps 9056 8187 3793 1310 370 2714
% 52.5 47.5 22.0 7.6 2.1 15.7
↓ 1832.8 1643.9 1195.6 272.2 31.2 144.9
% 52.7 47.3 34.4 7.8 0.9 4.2

G
.P

la
y Apps 5509 11734 4414 3226 2516 1578

% 31.9 68.1 25.6 18.7 14.6 9.2
↓ 102.1 3374.6 140.9 471.2 2401.5 361.0
% 2.9 97.1 4.1 13.6 69.1 10.4

SI
G

Apps 13441 3802 3316 330 132 24
%t 78.0 22.0 19.2 1.9 0.8 0.1
↓ 3256.4 220.3 68.8 46.9 102.5 2.2
% 93.7 6.3 2.0 1.3 2.9 0.1

U
U
ID

M
. Apps 11718 5525 3461 1877 99 88

% 68.0 32.0 20.1 10.9 0.6 0.5
↓ 2651.9 824.9 452.4 348.8 21.3 2.4
% 76.3 23.7 13.0 10.0 0.6 0.1

To
ta
l

Apps 2115 15128 - - - -
% 12.3 87.7 - - - -
↓ 57.4 3419.3 - - - -
% 1.7 98.3 - - - -

3A valid UUID is one that contains 32 hex digits in the form 8-4-4-4-12.
7

SIG Product Finder Our library classification methods identified
3,156 unique BLE libraries. Of these, we were able to obtain func-
tional categories for 324, corresponding to a total of 220 million
downloads. We manually verified those cases where we obtained
more than one functional category for a library. Of these, there
were fourteen false positives, originating from very common li-
brary names, which resulted in many hits in the SIG database.

Overall,The SIG Product Finder produced a very limited number
of matches (22% in terms of apps but only 6.3% in terms of down-
loads). A manual inspection of the results showed that many of the
companies that were being queried had incomplete information in
the SIG product database about their products, including only the
codename for the device with no further information about it. Also,
the complexity of the names being used in some of the cases, made
it difficult to map some of the libraries to the actual developers. As
an example, we extracted shenzhen as one of our possible library
names. However, Shenzhen is a well known location of many chip
manufacturers and a search in the Bluetooth SIG database reveals
1,210 companies with Shenzhen on its name. Most of the function-
ality matches wewere able to achieve using the SIG Product Finder
were related to location and fitness. Interestingly, in terms of down-
loads, this method was useful in identifying almost half of the apps
that interacted with environmental sensors in our dataset.
UUIDs The functionality mapping derived from KFUs is straight-
forward as those are defined directly by the Bluetooth SIG (except
those cases we identified as anomalous in §4.4). We take advantage
of this fact, and use a list of 376 KFUs as “ground truth” against
which to validate our framework.

Given that three different sources of information (i.e., strings,
fields and API method names) feed into the UUID Mapper, each
of which will generate its own list of category-subcategory assign-
ments, we had two main choices when selecting an overall out-
come: (𝑖) consider only those instances where the combined list
consists of (possiblymultiple instances of) a single unique category-
subcategory, or (𝑖𝑖) take a majority vote over all assigned category-
subcategory pairs. We found that the first option achieved cover-
age of 32% and an accuracy of 78%, while the second option re-
sulted in greater coverage of 46%, but a lower accuracy of 74%. As
we want to be as accurate as possible with category assignments,
we opted to sacrifice coverage and chose option (𝑖).

4.2 Summary
As can be seen in Figure 2, less than 30% of the apps are not affected
by any security vulnerability, with more than 40% of them having
at least 2 security vulnerabilities. Of those that had no security vul-
nerabilities, the two most predominant functional categories were
authentication and location services (beacons) where 77% and 82%
of apps had no security vulnerabilities identified respectively. In
the case of the beacons this was mainly because of the widespread
usage of a few beacon libraries that had no security vulnerabilities
identified.Themost predominant security vulnerabilities had to do
with insecure reads and writes, which affect more than 50% of the
analyzed apps (Table 3).

For each of the identified vulnerabilities, we highlight the five
most affected functional categories (in terms of apps) in 3. For
all security vulnerabilities, except sensitive KFUs, the distribution

0 1 2 3 4 5 6
Number of vulnerabilities found per app

0

1000

2000

3000

4000

5000

6000

7000

Ap
ps

 a
ffe

ct
ed 4729 4757

7263

479
15 0 0

Figure 2: Distribution of apps per number of security vul-
nerabilities that affect them.

across the most affected functional categories is similar. For sensi-
tive KFUs, most of the affected apps are within the fitness category,
due to the high number of fitness-related UUIDs that contribute to
the KFUs, as well as the amount of apps that have this functional-
ity. Apps with security related functionality only appeared in the
top 5 affected categories for two security vulnerabilities. However,
these are the least prevalent vulnerabilities affecting less than 30
apps overall.

The remainder of this section describes the results obtained from
the security analysis focusing on the vulnerabilities that Ble-Guuide
is capable of detecting.

4.3 Unauthorized Access to Sensitive KFUs
Theresults fromBle-Guuide showed that 12,289 of the 16,197APKs
contain adopted UUIDs. As mentioned in §3, the data exposed via
these services are vulnerable to access bymalicious applications on
peer BLE devices. Table 4 shows that, of the 7,077 APKs that ref-
erence BLE UUIDs (excluding GATT/GAP/common/unassigned),
over 25% (2,079) are concerned with user health data such as glu-
cose level, blood pressure and heart rate measurements. If this in-
formation is combined with other data such as activity levels, then
a malicious co-located application could derive a complete health
and fitness profile for a user [36]. In addition to general privacy
concerns, this data could also be exploited, unbeknownst to the
user, by insurance agencies and other interested parties.

4.4 Anomalous Use of Adopted UUIDs
10,556 applications within our dataset made use of at least one non-
GATT/GAP adopted UUID as well as having a presence on Play at
the time of testing. Only these were therefore used for anomaly
detection.Ble-Guuide identified 333 instances of incongruous use
of adopted UUIDs. From these, we separated out 123 applications
that used UUIDs belonging to health-related services.

Wemanually analyzed 95 APKs which with no obvious need for
the UUID taking the Google Play description into consideration.
The purpose of our analysis was to determine whether the apps
were making use of their BLE access capabilities to access sensi-
tive data, when their functionality clearly didn’t require it. Thirty
one of these APKs defined UUIDs that were not used anywhere

8

Fitness

Device management

Accessories

Location Communications

Sensitive KFUs

0

341

682

1023

1364

1705

Device management

Fitness

Accessories

Environment Location

Anomalous use of Adopted UUIDs

0

5

10

15

20

25

Medical

Fitness

Accessories

Communications Security

Insecure DFU

0

24

48

72

96

120

Medical

Fitness

Accessories

Location Environment

Insecure attribute writes

0

718

1436

2154

2872

3590

Fitness

Accessories

Medical

Location Environment

Insecure attribute reads

0

536

1072

1608

2144

2680

Security

Smart home

Accessories

Medical Fitness

Insecure Passkey entry

0

1

2

3

4

5

Figure 3: Five most affected functional categories (in terms of #apps) for each security vulnerability identified by Ble-Guuide.

Table 3: Number of apps (and corresponding downloads, in
1000s) detected by Ble-Guuide security analysis.

Security Issue # Apps # Downloads

Sensitive KFUs 1,762 76,378
Anomalous use of adopted UUIDs 123 103,920
Insecure DFU 207 115,413
Insecure attribute reads 10,267 1,657,044
Insecure attribute writes 8,593 6,923,041
Insecure Passkey Entry 12 1,010

within the app. In all such cases, the UUIDs were defined in a li-
brary, rather than in the core application. This would account for
why a UUID might be present but not used, as libraries may de-
fine more functionality than what is actually used by the calling
application.

There was one APK that incorporated the nRF Toolbox, which
demonstrates a large number of BLE profiles. The APK itself ap-
parently only used the DFU functionality within nRF Toolbox, but
started the Heart Rate Measurement function because the code for
doing so was present within nRF Toolbox.

We found one instance of a Blood Pressure Sensor service being
defined within the app code. A closer analysis of this APK revealed
that the code of this service was being reused (including the name)
from another app of the same developer that actually connected to
a blood pressure monitor.

There were a number of instances of incorrect UUID usage, i.e.,
UUIDs used for purposes other than for what they were defined. In
particular, 4 APKs, all from the same developer, denote the Heart
Rate Service as “RX Service”; another APK uses it to store door lock

parameters; and one APK uses various adopted UUIDs to control
a barometer.

Therewas also an unusual combination of UUIDs being used in a
set of 42 applicationswhich all enabled the control ofmusic stream-
ing to speakers. The applications used the service UUID 0x180A
(Device Information) in conjunction with the Heart Rate Measure-
ment characteristic. Given that this combination of service and
characteristic does not conform to the BLE service specification,
it is unlikely that this can be used for malicious data gathering.
Therefore, we assume this to be a developer error.

One APK included functionality to interface with a popular fit-
ness tracker, but with no indication of doing so within the applica-
tion description.We believe that, whenever a developer intends for
their application to interface with any sort of user device, particu-
larly one that handles sensitive user data, some mention should be
made within the app description.

Finally, there were ∼10 APKs where health-related services ap-
peared to be defined within the application’s own code, for no ap-
parent reason and where the developer did not have other health-
related apps on Play. It should be noted that around half of them
define the Heart Rate Service, which is the BLE service most com-
monly used in coding examples. Therefore, it is possible to assume
that the UUIDs for the service were copied from online sources un-
intentionally [21]. We emulated a BLE peripheral with the services
declared in each APK, to check if the application would attempt to
surreptitiously connect to it, but found that none did. This finding
supports our assumption of accidental use of adopted UUIDs.

4.5 Insecure DFU
Out of the 16,197 APKs in our dataset that returned at least one
UUID during the extraction phase, 603 APKs contained references
to DFU UUIDs. Ble-Guuide identified that Nordic DFU UUIDs are

9

the most prevalent one. Further analysis showed that 207 APKs
contained only the Legacy (i.e., insecure) DFU UUIDs.This means
that the devices associated with these 207 APKs, which correspond
to over 100 million total downloads and potentially as many BLE
devices, are vulnerable to unauthorized firmware upgrades. Forty
of the 207 APKs also contained at least one health or fitness-related
adopted UUID. Malicious modifications of firmware on such de-
vices could enable sustained incorrect health information being fed
to the user, with potentially life-threatening outcomes.

Note that in many cases, a peripheral has to be put into DFU
mode for it to advertise the DFU UUIDs and accept a firmware
image, which could be viewed as a deterrent for the attacker. How-
ever, we have observed instanceswhere thismode is enabled through
writing some particular byte sequence to another characteristic on
the device. A sufficiently-determined attacker would be able to ob-
tain this mechanism via reverse engineering or eavesdropping on
the BLE communications.

4.6 Insecure Attribute Reads and Writes
We identified 8,593 APKs with no protection for BLE reads and
10,420 APKs with no protections for BLE writes. These were prior-
itized using the results from the Ble-Guuide Functionality Map-
ping component according to the perceived sensitivity of the BLE
functionality. We place particular focus on functionality that re-
lates to user health or personal data, as well as any that have se-
curity consequences, such as firmware updates. We next present a
selection of case studies based on our analysis of such applications.
Case Study - ECG Applications For UUIDs that were classified
as medical:measurement, we executed the open-source tool BLE-
Cryptracer [36] against their host applications to identify any that
did not implement end-to-end protection for medical data. We pri-
oritized the resultant set of applications based on their installation
counts and manually analyzed the most downloaded apps.

TwoECGmeasurement applicationswithin the dataset read data
from external ECG recording devices and display the results within
the app, but with no protection between the two endpoints. Ac-
cording to previous research, this could mean that any other app
on the same Android device with BLUETOOTH permissions can
access this information [36]. We informed the developers of both
applications but have received no response.
Case Study - User PII The functionality mapping phase of Ble-
Guuide returned twoUUIDs thatweremapped to the sub-category
PII (Personally Identifiable Information). Both belonged to the same
application: a proximity-based “friend-finder”. Manually analyzing
the app,we found code suggesting that the app advertises the user’s
first name, device hardware address, and an ID within BLE adver-
tisements, and that it also scans for these advertisements to iden-
tify other app users in the vicinity. The app also maintains a Last
Seen parameter for each user it identifies, which can facilitate unau-
thorized tracking of users.

When we installed the app, we found the functionality to be
rudimentary, with no user name being collected and no BLE ad-
vertisements being issued. We observed that it was in demo mode,
which resulted in the data-collection functionality not being exe-
cuted. However, we believe that the presence of code within the

application for advertising user PII, along with burgeoning inter-
est in user/device trackers [42], signals an increase in the future of
such tracking or “finding” apps.
Case Study - Smart Door Lock From the results of Ble-Guuide,
we identified an application that interfaced with a BLE-enabled
door lock in an insecure manner. Specifically, the application code
logs the start of an authentication sequence, and the data that is
read from the BLE lock is sent to a decryption method. However,
the decryption code revealed that it did not employ any standard-
ized algorithm, but rather a custom scheme involving hard-coded
arrays of decimal digits (which represent an ASCII string) and a
fixed 5-character string, which represented some form of key. We
notified the developersbut have received no response.

In general, the use of non-standard cryptographic algorithms
(including fixed keys) is discouraged as their security has likely
not been verified by a community of experts.

4.7 Insecure Passkey Entry
Twelve APKs were identified with calls to the setPinmethod with
a fixed byte array input. Manual analysis showed that five such
instances were for Bluetooth Classic communications, which uses
the same API call for pairing. One of these applications controls
the functionality of a smart skateboard, which has serious safety
implications in the event of a Man-in-the-Middle attack.

Of the APKs where setPin was called with a BLE device, one
interfaced with a Blood Pressure monitor and set the PIN to all
zeros, effectively equating the Passkey Entry pairing model to the
less secure Just Works model. This APK is no longer available on
Google Play. We also found an app that acted as an IoT hub for
controlling a variety of devices and which uses a fixed PIN when
pairing with an activity wristband. Another APK was specifically
designed to update the firmware on a smart lock but used the fixed
PIN in the absence of a PIN setting on the lock, restricting theMitM
attack window to the first time the lock is used. The remainder of
the apps were used to access non-sensitive data from LED lamps,
a driving aid and a music amplifier. Note that the absence of calls
to setPin does not provide an indication of the security (or even
the presence) of pairing for the remaining applications.

5 LIMITATIONS
UUIDs are sometimes generated over multiple iterations, which
makes it difficult to extract them without complex static or dy-
namic analyses. This means that there is a possibility that we may
not have obtained complete coverage of all UUIDs used by an APK.
In addition, as discussed in §4.4, sometimes a large number of UUIDs
may be defined within an APK, but only a small subset may get
used. The extraction mechanism may not always capture this sce-
nario, and may therefore extract even those UUIDs that are not
used. In addition, if a single method declares and calls all UUIDs,
then they would all be assigned exactly the same categories even
if they differed in functionality.

In the case of functionality mapping, the richness and accuracy
of information obtained through the various sources (i.e., API, strings,
Play and SIG descriptions) depends entirely on the BLE device/app
developer actually publishing such information and not obfuscat-
ing their app.

10

Table 4: Prevalence of Relevant Adopted BLE Services. ↓=Downloads in thousands.

Service # Apps ↓ Service # Apps ↓

Battery 1749 319015 Heart Rate M. 1672 173644

GAP 898 127936 Health Thermometer 100 2682

GATT 292 23979 Blood Pressure 181 115825

Glucose 158 5787 Continuous Glucose M. 23 30

Body Composition 113 1561 Running Speed 110 5155

Pulse Oximeter 69 720 Weight Scale 90 103237

User Data 63 811 Insulin Delivery 1 1

6 RELATEDWORK
Bluetooth Low Energy has gained popularity in the IoT arena, and
recently so too has its security. Earlier research focused on the
security of the pairing process [33, 34], followed by privacy stud-
ies [19] and research into the possibility of Man-in-the-Middle at-
tacks [25], both are which are related in different ways to BLE ad-
vertisements. In 2020, Zhang et al. [45] identified a series of vul-
nerabilities that would allow attackers to downgrade secure BLE
connections to vulnerable modes such as ”Just Works”. The vulner-
ability originated from how the Secure Connections Only (SCO)
mode is implemented by most operating systems (OS). Because
most pairing and bonding operations are handled by the OS with-
out the intervention of the app, a peripheral BLE device connect-
ing to a vulnerable OS could have their connection downgraded
without being aware of it. As Ble-Guuide focuses on security is-
sues that originate on the BLE peripheral, a peripheral with no
security issues according to Ble-Guuide, could still be susceptible
to these attacks if connected to a vulnerable central device. Some
privacy studies have also incorporated UUID analysis, e.g., Zuo et
al. [48] and Celosia et al. [17] explored the possibility of fingerprint-
ing BLE devices by using their UUIDs. These works focus on how
KFUs can be used to track BLE devices and their owners. Our work
also uses UUID analysis as a central element, but we expand the
analysis performed in [17, 48] by addressing a wider range of secu-
rity vulnerabilities in peripherals and using the UUIDs to establish
the functionality of a peripheral to prioritize its security analysis.
Most recently, Zhang et al. [44] showed a protocol level flaw of
BLE MAC address generation, allowing attackers to deanonymize
MAC addresses based on an allowlist side channel.

A number of efforts have focused on analyzing mobile apps
within the BLE eco-system, from which various security vulner-
abilities have been found. Sivakumaran and Blasco [36] studied
the feasibility of BLE data access by unauthorized apps, while Ko-
rolova, et al. [27] described the possibility of device tracking across
apps. Wen et al. [41] analyzed the over 700 Bluetooth firmware
and uncovered a variety of link-layer vulnerabilities. Zhao et al.
[46] analysed the security of 1,160 Android apps that act as a BLE-
peripheral (instead of a central device). They found that 69% regu-
larly broadcast device or personal information in plaintext.

There is also a large body of research for applying natural lan-
guage processing (NLP) andmachine learning (ML) tomobile appli-
cation security analyses. WHYPER [31] made a first step towards

this direction, and it checked the consistency between app permis-
sion and app description using NLP. Zimmeck et al. [47] used a
keyword-based approach with a ML classifier to infer privacy poli-
cies. PolicyLint [8] analyzes policy contradictions by identifying
both positive and negative statements in policy descriptions us-
ing NLP, from which to uncover misleading policy descriptions.
POLICHECK [9] detects flow-to-policy consistency between app
implementation and policy description to determinewhether amo-
bile app properly discloses its privacy-sensitive behavior. Recently,
Hu et al. [24] used natural language processing to analyze app store
reviews. Their results show that negative app store reviews can be
used to identify apps that violate app market policies.

7 CONCLUSION
We have presented Ble-Guuide, a framework which employs a
mobile app-centric approach to identify security vulnerabilities in
BLE peripherals through the UUIDs usedwith BLE data.The frame-
work uses a wide variety of data sources, including NLP-processed
Google Play descriptions and data from the Bluetooth Special Inter-
est Group, as well as the application code, to determine the func-
tionality of, and security vulnerabilities that affect, BLE devices
that interface with a mobile app. The combination of functional-
ity and security analyses allows for quick identification of devices
where security vulnerabilities can have a severe impact.

Our framework identified numerous vulnerabilities, including
the widespread use of UUIDs that run the risk of unauthorized
data access, insecure firmware updates and potential functionality
conflicts. Combined, these security vulnerabilities affect more than
60% of the tested apps, including those with sensitive functional-
ities. We also present a number of case studies based on manual
analysis of applications that were flagged by our framework as be-
ing vulnerable. Our analyses reveal potential leakage of user health
information and PII, as well as severe vulnerabilities within a smart
door lock application, which has obvious ramifications for user
safety. This shows that basic security problems still exist within
IoT despite the increase in public scrutiny.

ACKNOWLEDGMENTS
This researchwas partially supported by the Engineering and Phys-
ical Sciences Research Council (EPSRC) and the UK government as
part of the Centre for Doctoral Training in Cyber Security at Royal
Holloway, University of London (EP/P009301/1), and by the NSF
Awards 2112471 and 2226443.

11

REFERENCES
[1] 2015. BLE External Memory Bootloader and Bootloadable. [Online]. Available:

http://www.cypress.com/file/228556/download. [Accessed: 21 May 2022].
[2] 2016. OAD Profile. [Online]. Available: https://www.ti.com/tool/download/S

IMPLELINK-CC2640R2-SDK/1.40.00.45. [Accessed: 01 May 2022].
[3] 2017. Buttonless Secure DFU Service. [Online]. Available: https://infocenter.n

ordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.0.0%2Fserv
ice_dfu.html. [Accessed: 20 May 2022].

[4] 2017. Consider blocklisting Qualcomm CSR firmware update service. [Online].
Available: https://github.com/WebBluetoothCG/registries/issues/20. [Accessed:
25 May 2022].

[5] 2017. Device Firmware Update Service. [Online]. Available: https://infocenter
.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fgr
oup__ble__sdk__srv__dfu.html. [Accessed: 25 May 2022].

[6] 2018. Androguard. https://github.com/androguard/androguard.
[7] 2020. Bluetooth low energy overview. [Online]. Available: https://developer.an

droid.com/guide/topics/connectivity/bluetooth-le. [Accessed: 01 Feb 2022].
[8] Benjamin Andow, Samin Yaseer Mahmud, Wenyu Wang, Justin Whitaker,

William Enck, Bradley Reaves, Kapil Singh, and Tao Xie. 2019. PolicyLint: Inves-
tigating Internal Privacy Policy Contradictions on Google Play. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA,
585–602. https://www.usenix.org/conference/usenixsecurity19/presentation/
andow

[9] Benjamin Andow, Samin Yaseer Mahmud, Justin Whitaker, William Enck,
Bradley Reaves, Kapil Singh, and Serge Egelman. 2020. Actions Speak Louder
than Words: Entity-Sensitive Privacy Policy and Data Flow Analysis with
POLICHECK. In 29th {USENIX} Security Symposium ({USENIX} Security 2020).

[10] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J. Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, Deepak Kumar, Chaz Lever, Zane Ma, Joshua Mason, Damian Men-
scher, Chad Seaman, Nick Sullivan, Kurt Thomas, and Yi Zhou. 2017. Under-
standing the Mirai Botnet. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 1093–1110. https://www.usenix.org
/conference/usenixsecurity17/technical-sessions/presentation/antonakakis

[11] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper B Rasmussen. 2019. The
KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation
Of Bluetooth BR/EDR. In 28th USENIX Security Symposium (USENIX Security 19).
USENIX Association, 1047–1061.

[12] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library
detection in android and its security applications. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 356–367.

[13] Satanjeev Banerjee and Ted Pedersen. 2002. An adapted Lesk algorithm for word
sense disambiguation using WordNet. In International conference on intelligent
text processing and computational linguistics. Springer, 136–145.

[14] Johannes K Becker, David Li, and David Starobinski. 2019. Tracking anonymized
bluetooth devices. Proceedings on Privacy Enhancing Technologies 2019, 3 (2019),
50–65.

[15] Bluetooth Special Interest Group. 2018. Bluetooth Market Update 2018.
[16] Bluetooth Special Interest Group. 2020. 16 Bit UUIDs for Members. [Online].

Available: https://www.bluetooth.com/specifications/assigned-numbers/16-bit-
uuids-for-members/ [Accessed 28 May 2020].

[17] Guillaume Celosia and Mathieu Cunche. 2019. Fingerprinting Bluetooth-Low-
Energy Devices Based on the Generic Attribute Profile. In Proceedings of the 2nd
International ACM Workshop on Security and Privacy for the Internet-of-Things.
ACM, 24–31.

[18] Timothy Claeys, Franck Rousseau, Boris Simunovic, and Bernard Tourancheau.
2019. Thermal covert channel in Bluetooth Low Energy networks. In WiSec.
267–276.

[19] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. 2016. Protecting Privacy of BLE
Device Users. In USENIX Security Symposium. 1205–1221.

[20] Earlence Fernandes, Jaeyeon Jung, and Atul Prakash. 2016. Security analysis
of emerging smart home applications. In 2016 IEEE Symposium on Security and
Privacy (SP). IEEE, 636–654.

[21] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack overflow considered harm-
ful? the impact of copy&paste on android application security. In 2017 IEEE Sym-
posium on Security and Privacy (SP). IEEE, 121–136.

[22] Robin Heydon. 2013. Bluetooth Low Energy: The Developer’s Handbook. Upper
Saddle River, N.J. : Prentice Hall.

[23] Robin Heydon. 2016. An Introduction to Bluetooth Low Energy. [Online].
Available: https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials
/slides-interim-2016-t2trg-2-7. [Accessed: 18 May 2022].

[24] Yangyu Hu, Haoyu Wang, Tiantong Ji, Xusheng Xiao, Xiapu Luo, Peng Gao,
and Yao Guo. 2021. CHAMP: Characterizing Undesired App Behaviors from
User Comments Based on Market Policies. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). 933–945. https://doi.org/10.1109/IC
SE43902.2021.00089

[25] Sławomir Jasek. 2016. Gattacking Bluetooth smart devices. In Black Hat USA
Conference.

[26] Yan Jia, Luyi Xing, Yuhang Mao, Dongfang Zhao, XiaoFeng Wang, Shangru
Zhao, and Yuqing Zhang. 2020. Burglars’ IoT Paradise: Understanding and Mit-
igating Security Risks of General Messaging Protocols on IoT Clouds. In 2020
IEEE Symposium on Security and Privacy (SP). 838–854.

[27] Aleksandra Korolova and Vinod Sharma. 2017. Cross-App Tracking via Nearby
Bluetooth Low Energy Devices. In PrivacyCon 2017. Federal Trade Commission.

[28] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. 2016. LibRadar: fast and
accurate detection of third-party libraries in Android apps. In Proceedings of the
38th international conference on software engineering companion. 653–656.

[29] George A Miller. 1995. WordNet: a lexical database for English. Commun. ACM
38, 11 (1995), 39–41.

[30] NXP. 2018. QN902x OTA Profile Guide. [Online]. Available: https://www.nxp.
com/docs/en/user-guide/UM10993.pdf [Accessed 07 Feb 2020].

[31] Rahul Pandita, XushengXiao,Wei Yang,William Enck, and TaoXie. 2013. {WHY-
PER}: TowardsAutomating RiskAssessment ofMobile Applications. In Presented
as part of the 22nd {USENIX} Security Symposium ({USENIX} Security 13). 527–542.

[32] Qualcomm Technologies. 2016. OTAU CSR102x. [Online]. Available: https:
//developer.qualcomm.com/qfile/34081/csr102x_otau_overview.pdf [Accessed
09 Aug 2019].

[33] Tomas Rosa. 2013. Bypassing Passkey Authentication in Bluetooth Low Energy.
IACR Cryptology ePrint Archive 2013 (2013), 309.

[34] Mike Ryan. 2013. Bluetooth: With Low Energy Comes Low Security. In 7th
USENIX Workshop on Offensive Technologies, WOOT ’13, Washington, D.C., USA,
August 13, 2013. https://www.usenix.org/conference/woot13/workshop-
program/presentation/ryan

[35] Silicon Labs. 2018. AN1086: Using the Gecko Bootloader with the Silicon Labs
Bluetooth Applications. [Online]. Available: https://www.silabs.com/documen
ts/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf [Accessed
04 May 2022].

[36] Pallavi Sivakumaran and Jorge Blasco. 2019. A Study of the Feasibility of
Co-located App Attacks against BLE and a Large-Scale Analysis of the Cur-
rent Application-Layer Security Landscape. In 28th USENIX Security Symposium
USENIX Security 19).

[37] Pallavi Sivakumaran and Jorge Blasco Alis. 2021. Whos Accessing My Data?
Application-Level Access Control for Bluetooth Low Energy. In Proceedings of
the 17th EAI International Conference on Security and Privacy in Communication
Networks. Springer.

[38] ST Microelectronics. 2016. AN4869 Application Note. [Online]. Available:
https://www.st.com/resource/en/application_note/dm00293821.pdf [Accessed
01 May 2022].

[39] ST Microelectronics. 2019. BlueSTSDK. [Online]. Available: https://github.com
/STMicroelectronics/BlueSTSDK_GUI_iOS [Accessed 03 May 2022].

[40] Kevin Townsend, Carles Cufí, Robert Davidson, et al. 2014. Getting started with
Bluetooth Low Energy: tools and techniques for low-power networking. O’Reilly
Media, Inc.

[41] Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2020. FirmXRay: Detecting
Bluetooth Link Layer Vulnerabilities from Bare-Metal Firmware. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communications Security.

[42] Lance Whitney. 2019. How to Locate Your Friends With the Apple ’Find My’
App. [Online]. Available: https://uk.pcmag.com/gallery/123522/how-to-locate-
your-friends-with-the-apple-find-my-app. [Accessed: 03 Mar 2022].

[43] William E Winkler. 1990. String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage. (1990).

[44] Yue Zhang and Zhiqiang Lin. 2022. When Good Becomes Evil: Tracking Blue-
tooth Low Energy Devices via Allowlist-based Side Channel and Its Counter-
measure. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. 3181–3194.

[45] Yue Zhang, Jian Weng, Rajib Dey, Yier Jin, Zhiqiang Lin, and Xinwen Fu. 2020.
Breaking Secure Pairing of Bluetooth Low Energy Using Downgrade Attacks. In
29th USENIX Security Symposium (USENIX Security 20). USENIXAssociation, 37–
54. https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-
yue

[46] Qingchuan Zhao, Chaoshun Zuo, Jorge Blasco, and Zhiqiang Lin. 2022.
PeriScope: Comprehensive Vulnerability Analysis of Mobile App-Defined Blue-
tooth Peripherals. In Proceedings of the 2022 ACM on Asia Conference on Com-
puter and Communications Security (Nagasaki, Japan) (ASIA CCS ’22). Associa-
tion for Computing Machinery, New York, NY, USA, 521–533. https://doi.org/
10.1145/3488932.3517410

[47] Sebastian Zimmeck, Ziqi Wang, Lieyong Zou, Roger Iyengar, Bin Liu, Florian
Schaub, Shomir Wilson, Norman Sadeh, Steven Bellovin, and Joel Reidenberg.
2016. Automated analysis of privacy requirements for mobile apps. In 2016 AAAI
Fall Symposium Series.

[48] Chaoshun Zuo, Haohuang Wen, Zhiqiang Lin, and Yinqian Zhang. 2019. Au-
tomatic Fingerprinting of Vulnerable BLE IoT Devices with Static UUIDs from
Mobile Apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security. ACM.

12

http://www.cypress.com/file/228556/download
https://www.ti.com/tool/download/SIMPLELINK-CC2640R2-SDK/1.40.00.45
https://www.ti.com/tool/download/SIMPLELINK-CC2640R2-SDK/1.40.00.45
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.0.0%2Fservice_dfu.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.0.0%2Fservice_dfu.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v14.0.0%2Fservice_dfu.html
https://github.com/WebBluetoothCG/registries/issues/20
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fgroup__ble__sdk__srv__dfu.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fgroup__ble__sdk__srv__dfu.html
https://infocenter.nordicsemi.com/index.jsp?topic=%2Fcom.nordic.infocenter.sdk5.v11.0.0%2Fgroup__ble__sdk__srv__dfu.html
https://github.com/androguard/androguard
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://www.usenix.org/conference/usenixsecurity19/presentation/andow
https://www.usenix.org/conference/usenixsecurity19/presentation/andow
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/antonakakis
https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members/
https://www.bluetooth.com/specifications/assigned-numbers/16-bit-uuids-for-members/
https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7
https://datatracker.ietf.org/meeting/interim-2016-t2trg-02/materials/slides-interim-2016-t2trg-2-7
https://doi.org/10.1109/ICSE43902.2021.00089
https://doi.org/10.1109/ICSE43902.2021.00089
https://www.nxp.com/docs/en/user-guide/UM10993.pdf
https://www.nxp.com/docs/en/user-guide/UM10993.pdf
https://developer.qualcomm.com/qfile/34081/csr102x_otau_overview.pdf
https://developer.qualcomm.com/qfile/34081/csr102x_otau_overview.pdf
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.silabs.com/documents/public/application-notes/an1086-gecko-bootloader-bluetooth.pdf
https://www.st.com/resource/en/application_note/dm00293821.pdf
https://github.com/STMicroelectronics/BlueSTSDK_GUI_iOS
https://github.com/STMicroelectronics/BlueSTSDK_GUI_iOS
https://uk.pcmag.com/gallery/123522/how-to-locate-your-friends-with-the-apple-find-my-app
https://uk.pcmag.com/gallery/123522/how-to-locate-your-friends-with-the-apple-find-my-app
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://www.usenix.org/conference/usenixsecurity20/presentation/zhang-yue
https://doi.org/10.1145/3488932.3517410
https://doi.org/10.1145/3488932.3517410

	Abstract
	1 Introduction
	2 Background
	2.1 Data on BLE Devices
	2.2 Security Issues with BLE Characteristics

	3 Ble-Guuide: A Framework for Prioritized Security Analysis of BLE Devices
	3.1 UUID Extractor and Classifier
	3.2 Functionality Mapper
	3.3 BLE Security Analysis

	4 Results
	4.1 Accuracy and Coverage
	4.2 Summary
	4.3 Unauthorized Access to Sensitive KFUs
	4.4 Anomalous Use of Adopted UUIDs
	4.5 Insecure DFU
	4.6 Insecure Attribute Reads and Writes
	4.7 Insecure Passkey Entry

	5 Limitations
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

